📄 footnode.html
字号:
<HTML>
<HEAD>
<TITLE>Footnotes</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF">
<DL> <DT><A NAME="635">...102#102.</A><DD>
The notation 103#103 denotes the
<em>floor function</em><A NAME=602> </A>,
which is defined as follows:
For any real number <I>x</I>, 104#104 is the
greatest integer less than or equal to <I>x</I>.
While we are on the subject,
there is a related function,
the <em>ceiling function</em><A NAME=604> </A>,
written 105#105.
For any real number <I>x</I>, 106#106 is the
smallest integer greater than or equal to <I>x</I>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="1140">...121#121.</A><DD>
In fact, we would normally write 122#122,
but we have not yet seen the 1#1 notation which is introduced
in Chapter <A HREF="page56.html#chapasymptotic" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page56.html#chapasymptotic"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="1686">...rule</A><DD>
Guillaume François Antoine de L'Hôpital,
marquis de Sainte-Mesme,
is known for his rule for computing limits which states that
if 360#360
and 361#361, then
<P>362#362<P>
where <I>f</I>'(<I>n</I>) and <I>g</I>'(<I>n</I>) are the
first derivatives with respect to <I>n</I> of
<I>f</I>(<I>n</I>) and <I>g</I>(<I>n</I>), respectively.
The rule is also effective
if 363#363
and 364#364.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="1689">...commensurate.</A><DD>
Functions which are commensurate<A NAME=1617> </A>
are functions which can be compared one with the other.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2160">...439#439.</A><DD>
This notion of the looseness (tightness<A NAME=1836> </A>)
of an asymptotic bound is related to
but not exactly the same as that given in Definition <A HREF="page63.html#defntightness" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page63.html#defntightness"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2168">...numbers.</A><DD>
Fibonacci numbers are named in honor of
Leonardo Pisano (Leonardo of Pisa),
the son of Bonaccio (in Latin, <em>Filius Bonaccii</em>),
who discovered the series in 1202.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2133">...numbers.</A><DD>
These running times were measured on a Sun SPARCstation 5,
Model 85, which has an 85 MHz clock, and 32MB RAM.
The programs were compiled using the SPARCompiler C++ 4.1 compiler,
and run under the Solaris 2.3 operating system.
The times shown are user CPU times, measured in seconds.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2873">...<tt>T</tt>.</A><DD>
This is not an unrealistic assumption.
In the absence of a user-defined overloading of the assignment operator,
the default behavior for assignment is to copy one-by-one
the data members of the object of type <tt>T</tt>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2880">...NAME=2789> </A></A><DD>
The <tt>outofrange</tt> exception
is defined in the C++ standard library.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3817">...616#616.</A><DD>
Actually, in C++ it is not possible to have a data type <tt>T</tt>
for which 617#617.
While C expressly forbids an empty <tt>struct</tt> declaration,
i.e., one which contains no data members (fields),
such declarations are permissible and quite common in C++ programs.
However, the draft standard specifically says that even though
an <em>empty</em> <tt>struct</tt> or <tt>class</tt> declaration is legal,
it shall always be the case that 618#618!
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3836">...NAME=3616> </A></A><DD>
The <tt>domainerror</tt> exception
is defined in the C++ standard library.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5432">...represents.</A><DD>
The <em>address</em> attribute is sometimes
called its <em>l-value</em><A NAME=4396> </A>
and the <em>value</em> attribute
is sometimes called is <em>r-value</em><A NAME=4399> </A>.
This terminology arises from considering the semantics of
an assignment statement such as <tt>y = x</tt>.
The meaning of such as statement is
``take the <em>value</em> of variable <tt>x</tt>
and store it in memory at the <em>address</em> of variable <tt>y</tt>.''
So, when a variable appears on the right-hand-side of an assignment,
we use its r-value;
and when it appears on the left-hand-size,
we use its l-value.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="6309">...address,</A><DD>
Actually, it is possible for two variables to occupy the same
memory location if a <tt>union</tt><A NAME=6092> </A> is used.
While there are legitimate uses for unions (see Chapter <A HREF="page416.html#chapheap" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page416.html#chapheap"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>),
it is reasonable to assume here that all objects have unique addresses.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8074">...NAME=8022> </A>.</A><DD>
The word <em>deque</em> is usually pronounced
like ``deck'' and sometimes like ``deek.''
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="10541">...class.</A><DD>
I will admit that the name <tt>ListAsLinkedList</tt> is somewhat confusing.
However, it is a whole word shorter than <tt>OrderedListAsLinkedList</tt>
and that much easier to type!
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="10583">...order</em></A><DD>
A <em>total order</em> is a relation, say <I><</I>,
defined on a set of elements, say 842#842,
with the following properties:
<OL><LI> For all pairs of elements 843#843,
such that 844#844, exactly one of either <I>i</I><I><</I><I>j</I> or <I>j</I><I><</I><I>i</I> holds.
(All elements are commensurate<A NAME=10465> </A>).<LI> For all triples 845#845,
846#846.
(The relation 397#397 is transitive<A NAME=10466> </A>).
</OL>
<P>
(See also Definition <A HREF="page484.html#defntotalorder" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page484.html#defntotalorder"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>).
<P>
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="11297">...<P>867#867<P></A><DD>
This is the Swedish word for the number two.
Since there is no <tt>å</tt> in the ASCII character set,
for the purposes of the discussion in this chapter we will use
the ASCII code for <tt>a</tt> in its place.
However, the Swedish national variant of the ISO 646 character set
uses the code corresponding to the ASCII character ``<tt>}</tt>''.
<P>
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="11165">...<P>867#867<P></A><DD>
I have been advised that a book with out sex will never be a best seller.
``Sex'' is the Swedish word for the number six.
<P>
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="11298">...integer.</A><DD>
The function <tt>bitsizeof</tt>
can be implemented as the C++ preprocessor macro
<tt>#define bitsizeof(T) (8*sizeof(T))</tt>
which determines the number of bits required to represent the type <tt>T</tt>
assuming eight-bit bytes.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -