📄 page371.html
字号:
is <I>k</I> and Theorem <A HREF="page371.html#theorempqueuesv" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page371.html#theorempqueuesv"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> tells us that the number of nodes is <IMG WIDTH=53 HEIGHT=28 ALIGN=MIDDLE ALT="tex2html_wrap_inline66648" SRC="img1508.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1508.gif" >.
Therefore, the height of <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" > is exactly <IMG WIDTH=56 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline59891" SRC="img403.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img403.gif" >.
<P>
Figure <A HREF="page371.html#figbinom2" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page371.html#figbinom2"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> shows that there are two ways
to think about the construction of binomial trees.
The first way follows directly from the Definition <A HREF="page371.html#defnbinomialtree" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page371.html#defnbinomialtree"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>.
I.e., binomial <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" > consists of a root node to which the <I>k</I> binomial trees
<IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66594" SRC="img1501.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1501.gif" >, <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66596" SRC="img1502.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1502.gif" >, ..., <IMG WIDTH=36 HEIGHT=21 ALIGN=MIDDLE ALT="tex2html_wrap_inline66598" SRC="img1503.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1503.gif" > are attached
as shown in Figure <A HREF="page371.html#figbinom2" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page371.html#figbinom2"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> (a).
<P>
<P><A NAME="27099"> </A><A NAME="figbinom2"> </A> <IMG WIDTH=575 HEIGHT=503 ALIGN=BOTTOM ALT="figure26922" SRC="img1519.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1519.gif" ><BR>
<STRONG>Figure:</STRONG> Two Views of Binomial Tree <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66602" SRC="img1504.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1504.gif" ><BR>
<P>
<P>
Alternatively, we can think of <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" > as being comprised of two binomial
trees of order <I>k</I>-1.
For example, Figure <A HREF="page371.html#figbinom2" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page371.html#figbinom2"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> (b) shows that <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66602" SRC="img1504.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1504.gif" >
is made up of two instances of <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66738" SRC="img1520.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1520.gif" >.
In general, suppose we have two trees of order <I>k</I>-1,
say <IMG WIDTH=36 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline66742" SRC="img1521.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1521.gif" > and <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline66744" SRC="img1522.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1522.gif" >,
where <IMG WIDTH=246 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline66746" SRC="img1523.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1523.gif" >.
Then we can construct a binomial tree of order <I>k</I> by combining
the trees to get
<P> <IMG WIDTH=389 HEIGHT=18 ALIGN=BOTTOM ALT="displaymath66566" SRC="img1524.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1524.gif" ><P>
<P>
Why do we call <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" > a <em>binomial</em> tree?
It is because the number of nodes at a given depth in the tree
is determined by the <em>binomial coefficient</em>.
And the binomial coefficient derives its name from the <em>binomial theorem</em>.
And the binomial theorem tells us how to compute the <IMG WIDTH=21 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline58453" SRC="img94.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img94.gif" > power of
a <em>binomial</em><A NAME=27114> </A>.
And a binomial is an expression which consists of two terms, such as <I>x</I>+<I>y</I>.
That is why it is called a binomial tree!
<P>
<BLOCKQUOTE> <b>Theorem (Binomial Theorem)</b><A NAME="theorempqueuesbinom"> </A>
The <IMG WIDTH=21 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline58453" SRC="img94.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img94.gif" > power of the binomial <I>x</I>+<I>y</I> for <IMG WIDTH=38 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline59063" SRC="img241.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img241.gif" >
is given by
<P> <IMG WIDTH=343 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath66567" SRC="img1525.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1525.gif" ><P>
where <IMG WIDTH=88 HEIGHT=29 ALIGN=MIDDLE ALT="tex2html_wrap_inline66762" SRC="img1526.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1526.gif" > is called the
<em>binomial coefficient</em><A NAME=27128> </A><A NAME=27129> </A>.
</BLOCKQUOTE>
<P>
extbfProof
The proof of the binomial theorem
is left as an exercise for the reader (Exercise <A HREF="page385.html#exercisepqueuesbinom" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page385.html#exercisepqueuesbinom"><IMG ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>).<A NAME="tex2html692" HREF="footnode.html#27283" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/footnode.html#27283"><IMG ALIGN=BOTTOM ALT="gif" SRC="foot_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/foot_motif.gif"></A>
<P>
The following theorem gives the expression
for the number of nodes at a given depth in a binomial tree:
<P>
<BLOCKQUOTE> <b>Theorem</b><A NAME="theorempqueuesvii"> </A>
The number of nodes at level <I>l</I> in <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" >,
the binomial tree of order <I>k</I>, where <IMG WIDTH=63 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline66770" SRC="img1527.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1527.gif" >,
is given by the <em>binomial coefficient</em> <IMG WIDTH=17 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline66772" SRC="img1528.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1528.gif" >.
</BLOCKQUOTE>
<P>
extbfProof (By induction).
Let <IMG WIDTH=34 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline66774" SRC="img1529.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1529.gif" > be the number of nodes at level <I>l</I> in <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66576" SRC="img1498.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1498.gif" >,
a binomial tree of order <I>k</I>.
<P>
<b>Base Case</b>
Since <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66594" SRC="img1501.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1501.gif" > contains a single node,
there is only one level in the tree, <I>l</I>=0,
and exactly one node at that level.
Therefore, <IMG WIDTH=106 HEIGHT=29 ALIGN=MIDDLE ALT="tex2html_wrap_inline66786" SRC="img1530.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1530.gif" >.
<P>
<b>Inductive Hypothesis</b>
Assume that <IMG WIDTH=76 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline66788" SRC="img1531.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1531.gif" > for <IMG WIDTH=114 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline66790" SRC="img1532.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1532.gif" >, for some <IMG WIDTH=36 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline63700" SRC="img1122.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1122.gif" >.
The binomial tree of order <I>h</I>+1 is composed of
two binomial trees of height <I>h</I>,
one attached under the root of the other.
Hence, the number of nodes at level <I>l</I> in <IMG WIDTH=35 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline66800" SRC="img1533.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1533.gif" >
is equal to the number of nodes at level <I>l</I> in <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66804" SRC="img1534.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1534.gif" >
plus the number of nodes at level <I>l</I>-1 in <IMG WIDTH=18 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline66804" SRC="img1534.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1534.gif" >:
<P> <IMG WIDTH=500 HEIGHT=279 ALIGN=BOTTOM ALT="eqnarray27151" SRC="img1535.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1535.gif" ><P>
Therefore by induction on <I>h</I>, <IMG WIDTH=76 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline66788" SRC="img1531.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img1531.gif" >.
<P>
<HR><A NAME="tex2html6514" HREF="page372.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page372.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/next_motif.gif"></A> <A NAME="tex2html6512" HREF="page370.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page370.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/up_motif.gif"></A> <A NAME="tex2html6506" HREF="page370.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page370.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/previous_motif.gif"></A> <A NAME="tex2html6516" HREF="page9.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page9.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="contents_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/contents_motif.gif"></A> <A NAME="tex2html6517" HREF="page620.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page620.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="index_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/index_motif.gif"></A> <P><ADDRESS>
<img src="bruno.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/bruno.gif" alt="Bruno" align=right>
<a href="javascript:if(confirm('http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html'" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html">Copyright © 1997</a> by <a href="javascript:if(confirm('http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html'" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html">Bruno R. Preiss, P.Eng.</a> All rights reserved.
</ADDRESS>
</BODY>
</HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -