⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 triangular.hpp

📁 C++的一个好库。。。现在很流行
💻 HPP
📖 第 1 页 / 共 5 页
字号:
//
//  Copyright (c) 2000-2002
//  Joerg Walter, Mathias Koch
//
//  Permission to use, copy, modify, distribute and sell this software
//  and its documentation for any purpose is hereby granted without fee,
//  provided that the above copyright notice appear in all copies and
//  that both that copyright notice and this permission notice appear
//  in supporting documentation.  The authors make no representations
//  about the suitability of this software for any purpose.
//  It is provided "as is" without express or implied warranty.
//
//  The authors gratefully acknowledge the support of
//  GeNeSys mbH & Co. KG in producing this work.
//

#ifndef _BOOST_UBLAS_TRIANGULAR_
#define _BOOST_UBLAS_TRIANGULAR_

#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/detail/temporary.hpp>
#include <boost/type_traits/remove_const.hpp>

// Iterators based on ideas of Jeremy Siek

namespace boost { namespace numeric { namespace ublas {

    // Array based triangular matrix class
    template<class T, class TRI, class L, class A>
    class triangular_matrix:
        public matrix_container<triangular_matrix<T, TRI, L, A> > {

        typedef T *pointer;
        typedef TRI triangular_type;
        typedef L layout_type;
        typedef triangular_matrix<T, TRI, L, A> self_type;
    public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
        using matrix_container<self_type>::operator ();
#endif
        typedef typename A::size_type size_type;
        typedef typename A::difference_type difference_type;
        typedef T value_type;
        typedef const T &const_reference;
        typedef T &reference;
        typedef A array_type;

        typedef const matrix_reference<const self_type> const_closure_type;
        typedef matrix_reference<self_type> closure_type;
        typedef vector<T, A> vector_temporary_type;
        typedef matrix<T, L, A> matrix_temporary_type;  // general sub-matrix
        typedef packed_tag storage_category;
        typedef typename L::orientation_category orientation_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        triangular_matrix ():
            matrix_container<self_type> (),
            size1_ (0), size2_ (0), data_ (0) {}
        BOOST_UBLAS_INLINE
        triangular_matrix (size_type size1, size_type size2):
            matrix_container<self_type> (),
            size1_ (size1), size2_ (size2), data_ (triangular_type::packed_size (layout_type (), size1, size2)) {
        }
        BOOST_UBLAS_INLINE
        triangular_matrix (size_type size1, size_type size2, const array_type &data):
            matrix_container<self_type> (),
            size1_ (size1), size2_ (size2), data_ (data) {}
        BOOST_UBLAS_INLINE
        triangular_matrix (const triangular_matrix &m):
            matrix_container<self_type> (),
            size1_ (m.size1_), size2_ (m.size2_), data_ (m.data_) {}
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix (const matrix_expression<AE> &ae):
            matrix_container<self_type> (),
            size1_ (ae ().size1 ()), size2_ (ae ().size2 ()),
            data_ (triangular_type::packed_size (layout_type (), size1_, size2_)) {
            matrix_assign<scalar_assign> (*this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size1 () const {
            return size1_;
        }
        BOOST_UBLAS_INLINE
        size_type size2 () const {
            return size2_;
        }

        // Storage accessors
        BOOST_UBLAS_INLINE
        const array_type &data () const {
            return data_;
        }
        BOOST_UBLAS_INLINE
        array_type &data () {
            return data_;
        }

        // Resizing
        BOOST_UBLAS_INLINE
        void resize (size_type size1, size_type size2, bool preserve = true) {
            if (preserve) {
                self_type temporary (size1, size2);
                detail::matrix_resize_preserve<layout_type> (*this, temporary);
            }
            else {
                data ().resize (triangular_type::packed_size (layout_type (), size1, size2));
                size1_ = size1;
                size2_ = size2;
            }
        }
        BOOST_UBLAS_INLINE
        void resize_packed_preserve (size_type size1, size_type size2) {
            size1_ = size1;
            size2_ = size2;
            data ().resize (triangular_type::packed_size (layout_type (), size1_, size2_), value_type ());
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i, size_type j) const {
            BOOST_UBLAS_CHECK (i < size1_, bad_index ());
            BOOST_UBLAS_CHECK (j < size2_, bad_index ());
            if (triangular_type::other (i, j))
                return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)];
            else if (triangular_type::one (i, j))
                return one_;
            else
                return zero_;
        }
        BOOST_UBLAS_INLINE
        reference at_element (size_type i, size_type j) {
            BOOST_UBLAS_CHECK (i < size1_, bad_index ());
            BOOST_UBLAS_CHECK (j < size2_, bad_index ());
            return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)];
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i, size_type j) {
            BOOST_UBLAS_CHECK (i < size1_, bad_index ());
            BOOST_UBLAS_CHECK (j < size2_, bad_index ());
            if (triangular_type::other (i, j))
                return data () [triangular_type::element (layout_type (), i, size1_, j, size2_)];
            else {
                bad_index ().raise ();
                // arbitary return value
                return const_cast<reference>(zero_);
            }
        }
        
        // Element assignment
        BOOST_UBLAS_INLINE
        reference insert_element (size_type i, size_type j, const_reference t) {
            return (operator () (i, j) = t);
        }
        BOOST_UBLAS_INLINE
        void erase_element (size_type i, size_type j) {
            operator () (i, j) = value_type/*zero*/();
        }
        
        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            // data ().clear ();
            std::fill (data ().begin (), data ().end (), value_type/*zero*/());
        }

        // Assignment
        BOOST_UBLAS_INLINE
        triangular_matrix &operator = (const triangular_matrix &m) {
            size1_ = m.size1_;
            size2_ = m.size2_;
            data () = m.data ();
            return *this;
        }
        BOOST_UBLAS_INLINE
        triangular_matrix &assign_temporary (triangular_matrix &m) {
            swap (m);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix &operator = (const matrix_expression<AE> &ae) {
            self_type temporary (ae);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix &assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix& operator += (const matrix_expression<AE> &ae) {
            self_type temporary (*this + ae);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix &plus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix& operator -= (const matrix_expression<AE> &ae) {
            self_type temporary (*this - ae);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        triangular_matrix &minus_assign (const matrix_expression<AE> &ae) {
            matrix_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        triangular_matrix& operator *= (const AT &at) {
            matrix_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        triangular_matrix& operator /= (const AT &at) {
            matrix_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (triangular_matrix &m) {
            if (this != &m) {
                // BOOST_UBLAS_CHECK (size2_ == m.size2_, bad_size ());
                std::swap (size1_, m.size1_);
                std::swap (size2_, m.size2_);
                data ().swap (m.data ());
            }
        }
        BOOST_UBLAS_INLINE
        friend void swap (triangular_matrix &m1, triangular_matrix &m2) {
            m1.swap (m2);
        }

        // Iterator types
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
        typedef indexed_iterator1<self_type, packed_random_access_iterator_tag> iterator1;
        typedef indexed_iterator2<self_type, packed_random_access_iterator_tag> iterator2;
        typedef indexed_const_iterator1<self_type, packed_random_access_iterator_tag> const_iterator1;
        typedef indexed_const_iterator2<self_type, packed_random_access_iterator_tag> const_iterator2;
#else
        class const_iterator1;
        class iterator1;
        class const_iterator2;
        class iterator2;
#endif
        typedef reverse_iterator_base1<const_iterator1> const_reverse_iterator1;
        typedef reverse_iterator_base1<iterator1> reverse_iterator1;
        typedef reverse_iterator_base2<const_iterator2> const_reverse_iterator2;
        typedef reverse_iterator_base2<iterator2> reverse_iterator2;

        // Element lookup
        BOOST_UBLAS_INLINE
        const_iterator1 find1 (int rank, size_type i, size_type j) const {
            if (rank == 1)
                i = triangular_type::restrict1 (i, j);
            return const_iterator1 (*this, i, j);
        }
        BOOST_UBLAS_INLINE
        iterator1 find1 (int rank, size_type i, size_type j) {
            if (rank == 1)
                i = triangular_type::mutable_restrict1 (i, j);
            return iterator1 (*this, i, j);
        }
        BOOST_UBLAS_INLINE
        const_iterator2 find2 (int rank, size_type i, size_type j) const {
            if (rank == 1)
                j = triangular_type::restrict2 (i, j);
            return const_iterator2 (*this, i, j);
        }
        BOOST_UBLAS_INLINE
        iterator2 find2 (int rank, size_type i, size_type j) {
            if (rank == 1)
                j = triangular_type::mutable_restrict2 (i, j);
            return iterator2 (*this, i, j);
        }

        // Iterators simply are indices.

#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
        class const_iterator1:
            public container_const_reference<triangular_matrix>,
            public random_access_iterator_base<packed_random_access_iterator_tag,
                                               const_iterator1, value_type> {
        public:
            typedef typename triangular_matrix::value_type value_type;
            typedef typename triangular_matrix::difference_type difference_type;
            typedef typename triangular_matrix::const_reference reference;
            typedef const typename triangular_matrix::pointer pointer;

            typedef const_iterator2 dual_iterator_type;
            typedef const_reverse_iterator2 dual_reverse_iterator_type;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            const_iterator1 ():
                container_const_reference<self_type> (), it1_ (), it2_ () {}
            BOOST_UBLAS_INLINE
            const_iterator1 (const self_type &m, size_type it1, size_type it2):
                container_const_reference<self_type> (m), it1_ (it1), it2_ (it2) {}
            BOOST_UBLAS_INLINE
            const_iterator1 (const iterator1 &it):
                container_const_reference<self_type> (it ()), it1_ (it.it1_), it2_ (it.it2_) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            const_iterator1 &operator ++ () {
                ++ it1_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator1 &operator -- () {
                -- it1_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator1 &operator += (difference_type n) {
                it1_ += n;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator1 &operator -= (difference_type n) {
                it1_ -= n;
                return *this;
            }
            BOOST_UBLAS_INLINE
            difference_type operator - (const const_iterator1 &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
                return it1_ - it.it1_;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            const_reference operator * () const {
                return (*this) () (it1_, it2_);
            }

#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
            BOOST_UBLAS_INLINE
#ifdef BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -