📄 matrix_assign.hpp
字号:
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_MATRIX_ASSIGN_
#define _BOOST_UBLAS_MATRIX_ASSIGN_
// Required for make_conformant storage
#include <vector>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
namespace detail {
// Weak equality check - useful to compare equality two arbitary matrix expression results.
// Since the actual expressions are unknown, we check for and arbitary error bound
// on the relative error.
// For a linear expression the infinity norm makes sense as we do not know how the elements will be
// combined in the expression. False positive results are inevitable for arbirary expressions!
template<class E1, class E2, class S>
BOOST_UBLAS_INLINE
bool equals (const matrix_expression<E1> &e1, const matrix_expression<E2> &e2, S epsilon, S min_norm) {
return norm_inf (e1 - e2) < epsilon *
std::max<S> (std::max<S> (norm_inf (e1), norm_inf (e2)), min_norm);
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
bool expression_type_check (const matrix_expression<E1> &e1, const matrix_expression<E2> &e2) {
typedef typename type_traits<typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type>::real_type real_type;
return equals (e1, e2, BOOST_UBLAS_TYPE_CHECK_EPSILON, BOOST_UBLAS_TYPE_CHECK_MIN);
}
template<class M, class E, class R>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void make_conformant (M &m, const matrix_expression<E> &e, row_major_tag, R) {
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
// FIXME unbounded_array with push_back maybe better
std::vector<std::pair<size_type, size_type> > index;
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
typename E::const_iterator1 it1e (e ().begin1 ());
typename E::const_iterator1 it1e_end (e ().end1 ());
while (it1 != it1_end && it1e != it1e_end) {
difference_type compare = it1.index1 () - it1e.index1 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
if (it2 != it2_end && it2e != it2e_end) {
size_type it2_index = it2.index2 (), it2e_index = it2e.index2 ();
while (true) {
difference_type compare = it2_index - it2e_index;
if (compare == 0) {
++ it2, ++ it2e;
if (it2 != it2_end && it2e != it2e_end) {
it2_index = it2.index2 ();
it2e_index = it2e.index2 ();
} else
break;
} else if (compare < 0) {
increment (it2, it2_end, - compare);
if (it2 != it2_end)
it2_index = it2.index2 ();
else
break;
} else if (compare > 0) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (*it2e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
if (it2e != it2e_end)
it2e_index = it2e.index2 ();
else
break;
}
}
}
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (*it2e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1, ++ it1e;
} else if (compare < 0) {
increment (it1, it1_end, - compare);
} else if (compare > 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (*it2e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1e;
}
}
while (it1e != it1e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (*it2e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1e;
}
// ISSUE proxies require insert_element
for (size_type k = 0; k < index.size (); ++ k)
m (index [k].first, index [k].second) = value_type/*zero*/();
}
template<class M, class E, class R>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void make_conformant (M &m, const matrix_expression<E> &e, column_major_tag, R) {
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
std::vector<std::pair<size_type, size_type> > index;
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
while (it2 != it2_end && it2e != it2e_end) {
difference_type compare = it2.index2 () - it2e.index2 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
if (it1 != it1_end && it1e != it1e_end) {
size_type it1_index = it1.index1 (), it1e_index = it1e.index1 ();
while (true) {
difference_type compare = it1_index - it1e_index;
if (compare == 0) {
++ it1, ++ it1e;
if (it1 != it1_end && it1e != it1e_end) {
it1_index = it1.index1 ();
it1e_index = it1e.index1 ();
} else
break;
} else if (compare < 0) {
increment (it1, it1_end, - compare);
if (it1 != it1_end)
it1_index = it1.index1 ();
else
break;
} else if (compare > 0) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (*it1e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
if (it1e != it1e_end)
it1e_index = it1e.index1 ();
else
break;
}
}
}
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (*it1e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2, ++ it2e;
} else if (compare < 0) {
increment (it2, it2_end, - compare);
} else if (compare > 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (*it1e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2e;
}
}
while (it2e != it2e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (*it1e != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2e;
}
// ISSUE proxies require insert_element
for (size_type k = 0; k < index.size (); ++ k)
m (index [k].first, index [k].second) = value_type/*zero*/();
}
}//namespace detail
// Explicitly iterating row major
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_matrix_assign_scalar (M &m, const T &t, row_major_tag) {
typedef F<typename M::iterator2::reference, T> functor_type;
typedef typename M::difference_type difference_type;
difference_type size1 (m.size1 ());
difference_type size2 (m.size2 ());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -