📄 basic_regex_creator.hpp
字号:
/*
*
* Copyright (c) 2004
* John Maddock
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE basic_regex_creator.cpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Declares template class basic_regex_creator which fills in
* the data members of a regex_data object.
*/
#ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
#define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP
#ifdef BOOST_HAS_ABI_HEADERS
# include BOOST_ABI_PREFIX
#endif
namespace boost{
namespace re_detail{
template <class charT>
struct digraph : public std::pair<charT, charT>
{
digraph() : std::pair<charT, charT>(0, 0){}
digraph(charT c1) : std::pair<charT, charT>(c1, 0){}
digraph(charT c1, charT c2) : std::pair<charT, charT>(c1, c2)
{}
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300)
digraph(const digraph<charT>& d) : std::pair<charT, charT>(d.first, d.second){}
#endif
template <class Seq>
digraph(const Seq& s) : std::pair<charT, charT>()
{
BOOST_ASSERT(s.size() <= 2);
BOOST_ASSERT(s.size());
this->first = s[0];
this->second = (s.size() > 1) ? s[1] : 0;
}
};
template <class charT, class traits>
class basic_char_set
{
public:
typedef digraph<charT> digraph_type;
typedef typename traits::string_type string_type;
typedef typename traits::char_class_type mask_type;
basic_char_set()
{
m_negate = false;
m_has_digraphs = false;
m_classes = 0;
m_negated_classes = 0;
m_empty = true;
}
void add_single(const digraph_type& s)
{
m_singles.insert(m_singles.end(), s);
if(s.second)
m_has_digraphs = true;
m_empty = false;
}
void add_range(const digraph_type& first, const digraph_type& end)
{
m_ranges.insert(m_ranges.end(), first);
m_ranges.insert(m_ranges.end(), end);
if(first.second)
{
m_has_digraphs = true;
add_single(first);
}
if(end.second)
{
m_has_digraphs = true;
add_single(end);
}
m_empty = false;
}
void add_class(mask_type m)
{
m_classes |= m;
m_empty = false;
}
void add_negated_class(mask_type m)
{
m_negated_classes |= m;
m_empty = false;
}
void add_equivalent(const digraph_type& s)
{
m_equivalents.insert(m_equivalents.end(), s);
if(s.second)
{
m_has_digraphs = true;
add_single(s);
}
m_empty = false;
}
void negate()
{
m_negate = true;
//m_empty = false;
}
//
// accessor functions:
//
bool has_digraphs()const
{
return m_has_digraphs;
}
bool is_negated()const
{
return m_negate;
}
typedef typename std::vector<digraph_type>::const_iterator list_iterator;
list_iterator singles_begin()const
{
return m_singles.begin();
}
list_iterator singles_end()const
{
return m_singles.end();
}
list_iterator ranges_begin()const
{
return m_ranges.begin();
}
list_iterator ranges_end()const
{
return m_ranges.end();
}
list_iterator equivalents_begin()const
{
return m_equivalents.begin();
}
list_iterator equivalents_end()const
{
return m_equivalents.end();
}
mask_type classes()const
{
return m_classes;
}
mask_type negated_classes()const
{
return m_negated_classes;
}
bool empty()const
{
return m_empty;
}
private:
std::vector<digraph_type> m_singles; // a list of single characters to match
std::vector<digraph_type> m_ranges; // a list of end points of our ranges
bool m_negate; // true if the set is to be negated
bool m_has_digraphs; // true if we have digraphs present
mask_type m_classes; // character classes to match
mask_type m_negated_classes; // negated character classes to match
bool m_empty; // whether we've added anything yet
std::vector<digraph_type> m_equivalents; // a list of equivalence classes
};
template <class charT, class traits>
class basic_regex_creator
{
public:
basic_regex_creator(regex_data<charT, traits>* data);
std::ptrdiff_t getoffset(void* addr)
{
return getoffset(addr, m_pdata->m_data.data());
}
std::ptrdiff_t getoffset(const void* addr, const void* base)
{
return static_cast<const char*>(addr) - static_cast<const char*>(base);
}
re_syntax_base* getaddress(std::ptrdiff_t off)
{
return getaddress(off, m_pdata->m_data.data());
}
re_syntax_base* getaddress(std::ptrdiff_t off, void* base)
{
return static_cast<re_syntax_base*>(static_cast<void*>(static_cast<char*>(base) + off));
}
void init(unsigned flags)
{
m_pdata->m_flags = flags;
m_icase = flags & regex_constants::icase;
}
regbase::flag_type flags()
{
return m_pdata->m_flags;
}
void flags(regbase::flag_type f)
{
m_pdata->m_flags = f;
if(m_icase != static_cast<bool>(f & regbase::icase))
{
m_icase = static_cast<bool>(f & regbase::icase);
}
}
re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base));
re_literal* append_literal(charT c);
re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set);
re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::false_*);
re_syntax_base* append_set(const basic_char_set<charT, traits>& char_set, mpl::true_*);
void finalize(const charT* p1, const charT* p2);
protected:
regex_data<charT, traits>* m_pdata; // pointer to the basic_regex_data struct we are filling in
const ::boost::regex_traits_wrapper<traits>&
m_traits; // convenience reference to traits class
re_syntax_base* m_last_state; // the last state we added
bool m_icase; // true for case insensitive matches
unsigned m_repeater_id; // the id of the next repeater
bool m_has_backrefs; // true if there are actually any backrefs
unsigned m_backrefs; // bitmask of permitted backrefs
boost::uintmax_t m_bad_repeats; // bitmask of repeats we can't deduce a startmap for;
typename traits::char_class_type m_word_mask; // mask used to determine if a character is a word character
typename traits::char_class_type m_mask_space; // mask used to determine if a character is a word character
typename traits::char_class_type m_lower_mask; // mask used to determine if a character is a lowercase character
typename traits::char_class_type m_upper_mask; // mask used to determine if a character is an uppercase character
typename traits::char_class_type m_alpha_mask; // mask used to determine if a character is an alphabetic character
private:
basic_regex_creator& operator=(const basic_regex_creator&);
basic_regex_creator(const basic_regex_creator&);
void fixup_pointers(re_syntax_base* state);
void create_startmaps(re_syntax_base* state);
int calculate_backstep(re_syntax_base* state);
void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask);
unsigned get_restart_type(re_syntax_base* state);
void set_all_masks(unsigned char* bits, unsigned char);
bool is_bad_repeat(re_syntax_base* pt);
void set_bad_repeat(re_syntax_base* pt);
syntax_element_type get_repeat_type(re_syntax_base* state);
void probe_leading_repeat(re_syntax_base* state);
};
template <class charT, class traits>
basic_regex_creator<charT, traits>::basic_regex_creator(regex_data<charT, traits>* data)
: m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0)
{
m_pdata->m_data.clear();
m_pdata->m_status = ::boost::regex_constants::error_ok;
static const charT w = 'w';
static const charT s = 's';
static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', };
static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', };
static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', };
m_word_mask = m_traits.lookup_classname(&w, &w +1);
m_mask_space = m_traits.lookup_classname(&s, &s +1);
m_lower_mask = m_traits.lookup_classname(l, l + 5);
m_upper_mask = m_traits.lookup_classname(u, u + 5);
m_alpha_mask = m_traits.lookup_classname(a, a + 5);
BOOST_ASSERT(m_word_mask != 0);
BOOST_ASSERT(m_mask_space != 0);
BOOST_ASSERT(m_lower_mask != 0);
BOOST_ASSERT(m_upper_mask != 0);
BOOST_ASSERT(m_alpha_mask != 0);
}
template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::append_state(syntax_element_type t, std::size_t s)
{
// if the state is a backref then make a note of it:
if(t == syntax_element_backref)
this->m_has_backrefs = true;
// append a new state, start by aligning our last one:
m_pdata->m_data.align();
// set the offset to the next state in our last one:
if(m_last_state)
m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
// now actually extent our data:
m_last_state = static_cast<re_syntax_base*>(m_pdata->m_data.extend(s));
// fill in boilerplate options in the new state:
m_last_state->next.i = 0;
m_last_state->type = t;
return m_last_state;
}
template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s)
{
// append a new state, start by aligning our last one:
m_pdata->m_data.align();
// set the offset to the next state in our last one:
if(m_last_state)
m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state);
// remember the last state position:
std::ptrdiff_t off = getoffset(m_last_state) + s;
// now actually insert our data:
re_syntax_base* new_state = static_cast<re_syntax_base*>(m_pdata->m_data.insert(pos, s));
// fill in boilerplate options in the new state:
new_state->next.i = s;
new_state->type = t;
m_last_state = getaddress(off);
return new_state;
}
template <class charT, class traits>
re_literal* basic_regex_creator<charT, traits>::append_literal(charT c)
{
re_literal* result;
// start by seeing if we have an existing re_literal we can extend:
if((0 == m_last_state) || (m_last_state->type != syntax_element_literal))
{
// no existing re_literal, create a new one:
result = static_cast<re_literal*>(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT)));
result->length = 1;
*static_cast<charT*>(static_cast<void*>(result+1)) = m_traits.translate(c, m_icase);
}
else
{
// we have an existing re_literal, extend it:
std::ptrdiff_t off = getoffset(m_last_state);
m_pdata->m_data.extend(sizeof(charT));
m_last_state = result = static_cast<re_literal*>(getaddress(off));
charT* characters = static_cast<charT*>(static_cast<void*>(result+1));
characters[result->length] = m_traits.translate(c, m_icase);
++(result->length);
}
return result;
}
template <class charT, class traits>
inline re_syntax_base* basic_regex_creator<charT, traits>::append_set(
const basic_char_set<charT, traits>& char_set)
{
typedef mpl::bool_< (sizeof(charT) == 1) > truth_type;
return char_set.has_digraphs()
? append_set(char_set, static_cast<mpl::false_*>(0))
: append_set(char_set, static_cast<truth_type*>(0));
}
template <class charT, class traits>
re_syntax_base* basic_regex_creator<charT, traits>::append_set(
const basic_char_set<charT, traits>& char_set, mpl::false_*)
{
typedef typename traits::string_type string_type;
typedef typename basic_char_set<charT, traits>::list_iterator item_iterator;
typedef typename traits::char_class_type mask_type;
re_set_long<mask_type>* result = static_cast<re_set_long<mask_type>*>(append_state(syntax_element_long_set, sizeof(re_set_long<mask_type>)));
//
// fill in the basics:
//
result->csingles = static_cast<unsigned int>(::boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end()));
result->cranges = static_cast<unsigned int>(::boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2;
result->cequivalents = static_cast<unsigned int>(::boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end()));
result->cclasses = char_set.classes();
result->cnclasses = char_set.negated_classes();
if(flags() & regbase::icase)
{
// adjust classes as needed:
if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask))
result->cclasses |= m_alpha_mask;
if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask))
result->cnclasses |= m_alpha_mask;
}
result->isnot = char_set.is_negated();
result->singleton = !char_set.has_digraphs();
//
// remember where the state is for later:
//
std::ptrdiff_t offset = getoffset(result);
//
// now extend with all the singles:
//
item_iterator first, last;
first = char_set.singles_begin();
last = char_set.singles_end();
while(first != last)
{
charT* p = static_cast<charT*>(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2)));
p[0] = m_traits.translate(first->first, m_icase);
if(first->second)
{
p[1] = m_traits.translate(first->second, m_icase);
p[2] = 0;
}
else
p[1] = 0;
++first;
}
//
// now extend with all the ranges:
//
first = char_set.ranges_begin();
last = char_set.ranges_end();
while(first != last)
{
// first grab the endpoints of the range:
digraph<charT> c1 = *first;
c1.first = this->m_traits.translate(c1.first, this->m_icase);
c1.second = this->m_traits.translate(c1.second, this->m_icase);
++first;
digraph<charT> c2 = *first;
c2.first = this->m_traits.translate(c2.first, this->m_icase);
c2.second = this->m_traits.translate(c2.second, this->m_icase);
++first;
string_type s1, s2;
// different actions now depending upon whether collation is turned on:
if(flags() & regex_constants::collate)
{
// we need to transform our range into sort keys:
#if BOOST_WORKAROUND(__GNUC__, < 3)
string_type in(3, charT(0));
in[0] = c1.first;
in[1] = c1.second;
s1 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
in[0] = c2.first;
in[1] = c2.second;
s2 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1));
#else
charT a1[3] = { c1.first, c1.second, charT(0), };
charT a2[3] = { c2.first, c2.second, charT(0), };
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -