⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 operator_return_type_traits.hpp

📁 C++的一个好库。。。现在很流行
💻 HPP
📖 第 1 页 / 共 2 页
字号:
//  operator_return_type_traits.hpp -- Boost Lambda Library ------------------

// Copyright (C) 1999, 2000 Jaakko J鋜vi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org

#ifndef BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
#define BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP

#include "boost/lambda/detail/is_instance_of.hpp"
#include "boost/type_traits/same_traits.hpp"

#include "boost/indirect_reference.hpp"

#include <cstddef> // needed for the ptrdiff_t
#include <iosfwd>  // for istream and ostream

#include <iterator> // needed for operator&

namespace boost { 
namespace lambda {
namespace detail {

// -- general helper templates for type deduction ------------------

// Much of the type deduction code for standard arithmetic types from Gary Powell

template <class A> struct promote_code { static const int value = -1; };
// this means that a code is not defined for A

// -- the next 5 types are needed in if_then_else_return 
// the promotion order is not important, but they must have distinct values.
template <> struct promote_code<bool> { static const int value = 10; };
template <> struct promote_code<char> { static const int value = 20; };
template <> struct promote_code<unsigned char> { static const int value = 30; };
template <> struct promote_code<signed char> { static const int value = 40; };
template <> struct promote_code<short int> { static const int value = 50; };
// ----------

template <> struct promote_code<int> { static const int value = 100; };
template <> struct promote_code<unsigned int> { static const int value = 200; };
template <> struct promote_code<long> { static const int value = 300; };
template <> struct promote_code<unsigned long> { static const int value = 400; };

template <> struct promote_code<float> { static const int value = 500; };
template <> struct promote_code<double> { static const int value = 600; };
template <> struct promote_code<long double> { static const int value = 700; };

// TODO: wchar_t

// forward delcaration of complex.

} // namespace detail
} // namespace lambda 
} // namespace boost

namespace std {
  template<class T> class complex;
}

namespace boost { 
namespace lambda {
namespace detail {

template <> struct promote_code< std::complex<float> > { static const int value = 800; };
template <> struct promote_code< std::complex<double> > { static const int value = 900; };
template <> struct promote_code< std::complex<long double> > { static const int value = 1000; };

// -- int promotion -------------------------------------------
template <class T> struct promote_to_int { typedef T type; };

template <> struct promote_to_int<bool> { typedef int type; };
template <> struct promote_to_int<char> { typedef int type; };
template <> struct promote_to_int<unsigned char> { typedef int type; };
template <> struct promote_to_int<signed char> { typedef int type; };
template <> struct promote_to_int<short int> { typedef int type; };

// The unsigned short int promotion rule is this:
// unsigned short int to signed int if a signed int can hold all values 
// of unsigned short int, otherwise go to unsigned int.
template <> struct promote_to_int<unsigned short int>
{ 
        typedef
                detail::IF<sizeof(int) <= sizeof(unsigned short int),        
// I had the logic reversed but ">" messes up the parsing.
                unsigned int,
                int>::RET type; 
};


// TODO: think, should there be default behaviour for non-standard types?

} // namespace detail

// ------------------------------------------ 
// Unary actions ----------------------------
// ------------------------------------------ 

template<class Act, class A>
struct plain_return_type_1 {
  typedef detail::unspecified type;
};



template<class Act, class A>
struct plain_return_type_1<unary_arithmetic_action<Act>, A> {
  typedef A type;
};

template<class Act, class A> 
struct return_type_1<unary_arithmetic_action<Act>, A> { 
  typedef 
    typename plain_return_type_1<
      unary_arithmetic_action<Act>,
      typename detail::remove_reference_and_cv<A>::type
    >::type type;
};


template<class A>
struct plain_return_type_1<bitwise_action<not_action>, A> {
  typedef A type;
};

// bitwise not, operator~()
template<class A> struct return_type_1<bitwise_action<not_action>, A> {
  typedef 
    typename plain_return_type_1<
      bitwise_action<not_action>,
      typename detail::remove_reference_and_cv<A>::type
    >::type type;
};


// prefix increment and decrement operators return 
// their argument by default as a non-const reference
template<class Act, class A> 
struct plain_return_type_1<pre_increment_decrement_action<Act>, A> {
  typedef A& type;
};

template<class Act, class A> 
struct return_type_1<pre_increment_decrement_action<Act>, A> {
  typedef 
    typename plain_return_type_1<
      pre_increment_decrement_action<Act>,
      typename detail::remove_reference_and_cv<A>::type
    >::type type;
};

// post decrement just returns the same plain type.
template<class Act, class A>
struct plain_return_type_1<post_increment_decrement_action<Act>, A> {
  typedef A type;
};

template<class Act, class A> 
struct return_type_1<post_increment_decrement_action<Act>, A> 
{ 
  typedef 
    typename plain_return_type_1<
      post_increment_decrement_action<Act>,
      typename detail::remove_reference_and_cv<A>::type
    >::type type;
};

// logical not, operator!()
template<class A> 
struct plain_return_type_1<logical_action<not_action>, A> {
  typedef bool type;
};

template<class A>
struct return_type_1<logical_action<not_action>, A> {
  typedef 
    typename plain_return_type_1<
      logical_action<not_action>,
      typename detail::remove_reference_and_cv<A>::type
    >::type type;
};

// address of action ---------------------------------------


template<class A> 
struct return_type_1<other_action<addressof_action>, A> { 
  typedef 
    typename plain_return_type_1<
      other_action<addressof_action>, 
      typename detail::remove_reference_and_cv<A>::type
    >::type type1;

  // If no user defined specialization for A, then return the
  // cv qualified pointer to A
  typedef typename detail::IF<
    boost::is_same<type1, detail::unspecified>::value, 
    typename boost::remove_reference<A>::type*,
    type1
  >::RET type;
};

// contentsof action ------------------------------------

// TODO: this deduction may lead to fail directly, 
// (if A has no specialization for iterator_traits and has no
// typedef A::reference.
// There is no easy way around this, cause there doesn't seem to be a way
// to test whether a class is an iterator or not.
 
// The default works with std::iterators.

namespace detail {

  // A is a nonreference type
template <class A> struct contentsof_type {
  typedef typename boost::indirect_reference<A>::type type; 
};

  // this is since the nullary () in lambda_functor is always instantiated
template <> struct contentsof_type<null_type> {
  typedef detail::unspecified type;
};


template <class A> struct contentsof_type<const A> {
  typedef typename contentsof_type<A>::type type1;
  // return a reference to the underlying const type
  // the IF is because the A::reference in the primary template could
  // be some class type rather than a real reference, hence
  // we do not want to make it a reference here either
    typedef typename detail::IF<
      is_reference<type1>::value, 
      const typename boost::remove_reference<type1>::type &,
      const type1
  >::RET type;
};

template <class A> struct contentsof_type<volatile A> {
  typedef typename contentsof_type<A>::type type1;
  typedef typename detail::IF<
    is_reference<type1>::value, 
    volatile typename boost::remove_reference<type1>::type &,
    volatile type1
  >::RET type;
};

template <class A> struct contentsof_type<const volatile A> {
  typedef typename contentsof_type<A>::type type1;
  typedef typename detail::IF<
    is_reference<type1>::value, 
    const volatile typename boost::remove_reference<type1>::type &,
    const volatile type1
  >::RET type;
};

  // standard iterator traits should take care of the pointer types 
  // but just to be on the safe side, we have the specializations here:
  // these work even if A is cv-qualified.
template <class A> struct contentsof_type<A*> {
  typedef A& type;
};
template <class A> struct contentsof_type<A* const> {
  typedef A& type;
};
template <class A> struct contentsof_type<A* volatile> {
  typedef A& type;
};
template <class A> struct contentsof_type<A* const volatile> {
  typedef A& type;
};

template<class A, int N> struct contentsof_type<A[N]> { 
  typedef A& type; 
};
template<class A, int N> struct contentsof_type<const A[N]> { 
  typedef const A& type; 
};
template<class A, int N> struct contentsof_type<volatile A[N]> { 
  typedef volatile A& type; 
};
template<class A, int N> struct contentsof_type<const volatile A[N]> { 
  typedef const volatile A& type; 
};





} // end detail

template<class A> 
struct return_type_1<other_action<contentsof_action>, A> { 

  typedef 
    typename plain_return_type_1<
      other_action<contentsof_action>, 
      typename detail::remove_reference_and_cv<A>::type
    >::type type1;

  // If no user defined specialization for A, then return the
  // cv qualified pointer to A
  typedef typename 
  detail::IF_type<
    boost::is_same<type1, detail::unspecified>::value, 
    detail::contentsof_type<
      typename boost::remove_reference<A>::type
    >,
    detail::identity_mapping<type1>
  >::type type;
};


// ------------------------------------------------------------------
// binary actions ---------------------------------------------------
// ------------------------------------------------------------------

// here the default case is: no user defined versions:
template <class Act, class A, class B>
struct plain_return_type_2 {
  typedef detail::unspecified type; 
};

namespace detail {

// error classes
class illegal_pointer_arithmetic{};

// pointer arithmetic type deductions ----------------------
// value = false means that this is not a pointer arithmetic case
// value = true means, that this can be a pointer arithmetic case, but not necessarily is
// This means, that for user defined operators for pointer types, say for some operator+(X, *Y),
// the deductions must be coded at an earliel level (return_type_2).

template<class Act, class A, class B> 
struct pointer_arithmetic_traits { static const bool value = false; };

template<class A, class B> 
struct pointer_arithmetic_traits<plus_action, A, B> { 

  typedef typename 
    array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
  typedef typename 
    array_to_pointer<typename boost::remove_reference<B>::type>::type BP;

  static const bool is_pointer_A = boost::is_pointer<AP>::value;
  static const bool is_pointer_B = boost::is_pointer<BP>::value;  

  static const bool value = is_pointer_A || is_pointer_B;

  // can't add two pointers.
  // note, that we do not check wether the other type is valid for 
  // addition with a pointer.
  // the compiler will catch it in the apply function

  typedef typename 
  detail::IF<
    is_pointer_A && is_pointer_B, 
      detail::return_type_deduction_failure<
        detail::illegal_pointer_arithmetic
      >,
      typename detail::IF<is_pointer_A, AP, BP>::RET
  >::RET type; 

};

template<class A, class B> 
struct pointer_arithmetic_traits<minus_action, A, B> { 
  typedef typename 
    array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
  typedef typename 
    array_to_pointer<typename boost::remove_reference<B>::type>::type BP;

  static const bool is_pointer_A = boost::is_pointer<AP>::value;
  static const bool is_pointer_B = boost::is_pointer<BP>::value;  

  static const bool value = is_pointer_A || is_pointer_B;

  static const bool same_pointer_type =
    is_pointer_A && is_pointer_B && 
    boost::is_same<
      typename boost::remove_const<
        typename boost::remove_pointer<
          typename boost::remove_const<AP>::type
        >::type
      >::type,
      typename boost::remove_const<
        typename boost::remove_pointer<
          typename boost::remove_const<BP>::type
        >::type
      >::type
    >::value;

  // ptr - ptr has type ptrdiff_t
  // note, that we do not check if, in ptr - B, B is 
  // valid for subtraction with a pointer.
  // the compiler will catch it in the apply function

  typedef typename 
  detail::IF<
    same_pointer_type, const std::ptrdiff_t,
    typename detail::IF<
      is_pointer_A, 
      AP, 
      detail::return_type_deduction_failure<detail::illegal_pointer_arithmetic>
    >::RET
  >::RET type; 
};

} // namespace detail
   
// -- arithmetic actions ---------------------------------------------

namespace detail {
   
template<bool is_pointer_arithmetic, class Act, class A, class B> 
struct return_type_2_arithmetic_phase_1;

template<class A, class B> struct return_type_2_arithmetic_phase_2;
template<class A, class B> struct return_type_2_arithmetic_phase_3;

} // namespace detail
  

// drop any qualifiers from the argument types within arithmetic_action
template<class A, class B, class Act> 
struct return_type_2<arithmetic_action<Act>, A, B>
{
  typedef typename detail::remove_reference_and_cv<A>::type plain_A;
  typedef typename detail::remove_reference_and_cv<B>::type plain_B;

  typedef typename 
    plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>::type type1;
  
  // if user defined return type, do not enter the whole arithmetic deductions
  typedef typename 
    detail::IF_type<
      boost::is_same<type1, detail::unspecified>::value, 
      detail::return_type_2_arithmetic_phase_1<
         detail::pointer_arithmetic_traits<Act, A, B>::value, Act, A, B
      >,
      plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>
    >::type type;
};

namespace detail {
   
// perform integral promotion, no pointer arithmetic
template<bool is_pointer_arithmetic, class Act, class A, class B> 
struct return_type_2_arithmetic_phase_1
{
  typedef typename 
    return_type_2_arithmetic_phase_2<
      typename remove_reference_and_cv<A>::type,
      typename remove_reference_and_cv<B>::type
    >::type type;
};

// pointer_arithmetic
template<class Act, class A, class B> 
struct return_type_2_arithmetic_phase_1<true, Act, A, B>
{
  typedef typename 
    pointer_arithmetic_traits<Act, A, B>::type type;
};

template<class A, class B>
struct return_type_2_arithmetic_phase_2 {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -