📄 operator_return_type_traits.hpp
字号:
// operator_return_type_traits.hpp -- Boost Lambda Library ------------------
// Copyright (C) 1999, 2000 Jaakko J鋜vi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
#ifndef BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
#define BOOST_LAMBDA_OPERATOR_RETURN_TYPE_TRAITS_HPP
#include "boost/lambda/detail/is_instance_of.hpp"
#include "boost/type_traits/same_traits.hpp"
#include "boost/indirect_reference.hpp"
#include <cstddef> // needed for the ptrdiff_t
#include <iosfwd> // for istream and ostream
#include <iterator> // needed for operator&
namespace boost {
namespace lambda {
namespace detail {
// -- general helper templates for type deduction ------------------
// Much of the type deduction code for standard arithmetic types from Gary Powell
template <class A> struct promote_code { static const int value = -1; };
// this means that a code is not defined for A
// -- the next 5 types are needed in if_then_else_return
// the promotion order is not important, but they must have distinct values.
template <> struct promote_code<bool> { static const int value = 10; };
template <> struct promote_code<char> { static const int value = 20; };
template <> struct promote_code<unsigned char> { static const int value = 30; };
template <> struct promote_code<signed char> { static const int value = 40; };
template <> struct promote_code<short int> { static const int value = 50; };
// ----------
template <> struct promote_code<int> { static const int value = 100; };
template <> struct promote_code<unsigned int> { static const int value = 200; };
template <> struct promote_code<long> { static const int value = 300; };
template <> struct promote_code<unsigned long> { static const int value = 400; };
template <> struct promote_code<float> { static const int value = 500; };
template <> struct promote_code<double> { static const int value = 600; };
template <> struct promote_code<long double> { static const int value = 700; };
// TODO: wchar_t
// forward delcaration of complex.
} // namespace detail
} // namespace lambda
} // namespace boost
namespace std {
template<class T> class complex;
}
namespace boost {
namespace lambda {
namespace detail {
template <> struct promote_code< std::complex<float> > { static const int value = 800; };
template <> struct promote_code< std::complex<double> > { static const int value = 900; };
template <> struct promote_code< std::complex<long double> > { static const int value = 1000; };
// -- int promotion -------------------------------------------
template <class T> struct promote_to_int { typedef T type; };
template <> struct promote_to_int<bool> { typedef int type; };
template <> struct promote_to_int<char> { typedef int type; };
template <> struct promote_to_int<unsigned char> { typedef int type; };
template <> struct promote_to_int<signed char> { typedef int type; };
template <> struct promote_to_int<short int> { typedef int type; };
// The unsigned short int promotion rule is this:
// unsigned short int to signed int if a signed int can hold all values
// of unsigned short int, otherwise go to unsigned int.
template <> struct promote_to_int<unsigned short int>
{
typedef
detail::IF<sizeof(int) <= sizeof(unsigned short int),
// I had the logic reversed but ">" messes up the parsing.
unsigned int,
int>::RET type;
};
// TODO: think, should there be default behaviour for non-standard types?
} // namespace detail
// ------------------------------------------
// Unary actions ----------------------------
// ------------------------------------------
template<class Act, class A>
struct plain_return_type_1 {
typedef detail::unspecified type;
};
template<class Act, class A>
struct plain_return_type_1<unary_arithmetic_action<Act>, A> {
typedef A type;
};
template<class Act, class A>
struct return_type_1<unary_arithmetic_action<Act>, A> {
typedef
typename plain_return_type_1<
unary_arithmetic_action<Act>,
typename detail::remove_reference_and_cv<A>::type
>::type type;
};
template<class A>
struct plain_return_type_1<bitwise_action<not_action>, A> {
typedef A type;
};
// bitwise not, operator~()
template<class A> struct return_type_1<bitwise_action<not_action>, A> {
typedef
typename plain_return_type_1<
bitwise_action<not_action>,
typename detail::remove_reference_and_cv<A>::type
>::type type;
};
// prefix increment and decrement operators return
// their argument by default as a non-const reference
template<class Act, class A>
struct plain_return_type_1<pre_increment_decrement_action<Act>, A> {
typedef A& type;
};
template<class Act, class A>
struct return_type_1<pre_increment_decrement_action<Act>, A> {
typedef
typename plain_return_type_1<
pre_increment_decrement_action<Act>,
typename detail::remove_reference_and_cv<A>::type
>::type type;
};
// post decrement just returns the same plain type.
template<class Act, class A>
struct plain_return_type_1<post_increment_decrement_action<Act>, A> {
typedef A type;
};
template<class Act, class A>
struct return_type_1<post_increment_decrement_action<Act>, A>
{
typedef
typename plain_return_type_1<
post_increment_decrement_action<Act>,
typename detail::remove_reference_and_cv<A>::type
>::type type;
};
// logical not, operator!()
template<class A>
struct plain_return_type_1<logical_action<not_action>, A> {
typedef bool type;
};
template<class A>
struct return_type_1<logical_action<not_action>, A> {
typedef
typename plain_return_type_1<
logical_action<not_action>,
typename detail::remove_reference_and_cv<A>::type
>::type type;
};
// address of action ---------------------------------------
template<class A>
struct return_type_1<other_action<addressof_action>, A> {
typedef
typename plain_return_type_1<
other_action<addressof_action>,
typename detail::remove_reference_and_cv<A>::type
>::type type1;
// If no user defined specialization for A, then return the
// cv qualified pointer to A
typedef typename detail::IF<
boost::is_same<type1, detail::unspecified>::value,
typename boost::remove_reference<A>::type*,
type1
>::RET type;
};
// contentsof action ------------------------------------
// TODO: this deduction may lead to fail directly,
// (if A has no specialization for iterator_traits and has no
// typedef A::reference.
// There is no easy way around this, cause there doesn't seem to be a way
// to test whether a class is an iterator or not.
// The default works with std::iterators.
namespace detail {
// A is a nonreference type
template <class A> struct contentsof_type {
typedef typename boost::indirect_reference<A>::type type;
};
// this is since the nullary () in lambda_functor is always instantiated
template <> struct contentsof_type<null_type> {
typedef detail::unspecified type;
};
template <class A> struct contentsof_type<const A> {
typedef typename contentsof_type<A>::type type1;
// return a reference to the underlying const type
// the IF is because the A::reference in the primary template could
// be some class type rather than a real reference, hence
// we do not want to make it a reference here either
typedef typename detail::IF<
is_reference<type1>::value,
const typename boost::remove_reference<type1>::type &,
const type1
>::RET type;
};
template <class A> struct contentsof_type<volatile A> {
typedef typename contentsof_type<A>::type type1;
typedef typename detail::IF<
is_reference<type1>::value,
volatile typename boost::remove_reference<type1>::type &,
volatile type1
>::RET type;
};
template <class A> struct contentsof_type<const volatile A> {
typedef typename contentsof_type<A>::type type1;
typedef typename detail::IF<
is_reference<type1>::value,
const volatile typename boost::remove_reference<type1>::type &,
const volatile type1
>::RET type;
};
// standard iterator traits should take care of the pointer types
// but just to be on the safe side, we have the specializations here:
// these work even if A is cv-qualified.
template <class A> struct contentsof_type<A*> {
typedef A& type;
};
template <class A> struct contentsof_type<A* const> {
typedef A& type;
};
template <class A> struct contentsof_type<A* volatile> {
typedef A& type;
};
template <class A> struct contentsof_type<A* const volatile> {
typedef A& type;
};
template<class A, int N> struct contentsof_type<A[N]> {
typedef A& type;
};
template<class A, int N> struct contentsof_type<const A[N]> {
typedef const A& type;
};
template<class A, int N> struct contentsof_type<volatile A[N]> {
typedef volatile A& type;
};
template<class A, int N> struct contentsof_type<const volatile A[N]> {
typedef const volatile A& type;
};
} // end detail
template<class A>
struct return_type_1<other_action<contentsof_action>, A> {
typedef
typename plain_return_type_1<
other_action<contentsof_action>,
typename detail::remove_reference_and_cv<A>::type
>::type type1;
// If no user defined specialization for A, then return the
// cv qualified pointer to A
typedef typename
detail::IF_type<
boost::is_same<type1, detail::unspecified>::value,
detail::contentsof_type<
typename boost::remove_reference<A>::type
>,
detail::identity_mapping<type1>
>::type type;
};
// ------------------------------------------------------------------
// binary actions ---------------------------------------------------
// ------------------------------------------------------------------
// here the default case is: no user defined versions:
template <class Act, class A, class B>
struct plain_return_type_2 {
typedef detail::unspecified type;
};
namespace detail {
// error classes
class illegal_pointer_arithmetic{};
// pointer arithmetic type deductions ----------------------
// value = false means that this is not a pointer arithmetic case
// value = true means, that this can be a pointer arithmetic case, but not necessarily is
// This means, that for user defined operators for pointer types, say for some operator+(X, *Y),
// the deductions must be coded at an earliel level (return_type_2).
template<class Act, class A, class B>
struct pointer_arithmetic_traits { static const bool value = false; };
template<class A, class B>
struct pointer_arithmetic_traits<plus_action, A, B> {
typedef typename
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
typedef typename
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
static const bool is_pointer_A = boost::is_pointer<AP>::value;
static const bool is_pointer_B = boost::is_pointer<BP>::value;
static const bool value = is_pointer_A || is_pointer_B;
// can't add two pointers.
// note, that we do not check wether the other type is valid for
// addition with a pointer.
// the compiler will catch it in the apply function
typedef typename
detail::IF<
is_pointer_A && is_pointer_B,
detail::return_type_deduction_failure<
detail::illegal_pointer_arithmetic
>,
typename detail::IF<is_pointer_A, AP, BP>::RET
>::RET type;
};
template<class A, class B>
struct pointer_arithmetic_traits<minus_action, A, B> {
typedef typename
array_to_pointer<typename boost::remove_reference<A>::type>::type AP;
typedef typename
array_to_pointer<typename boost::remove_reference<B>::type>::type BP;
static const bool is_pointer_A = boost::is_pointer<AP>::value;
static const bool is_pointer_B = boost::is_pointer<BP>::value;
static const bool value = is_pointer_A || is_pointer_B;
static const bool same_pointer_type =
is_pointer_A && is_pointer_B &&
boost::is_same<
typename boost::remove_const<
typename boost::remove_pointer<
typename boost::remove_const<AP>::type
>::type
>::type,
typename boost::remove_const<
typename boost::remove_pointer<
typename boost::remove_const<BP>::type
>::type
>::type
>::value;
// ptr - ptr has type ptrdiff_t
// note, that we do not check if, in ptr - B, B is
// valid for subtraction with a pointer.
// the compiler will catch it in the apply function
typedef typename
detail::IF<
same_pointer_type, const std::ptrdiff_t,
typename detail::IF<
is_pointer_A,
AP,
detail::return_type_deduction_failure<detail::illegal_pointer_arithmetic>
>::RET
>::RET type;
};
} // namespace detail
// -- arithmetic actions ---------------------------------------------
namespace detail {
template<bool is_pointer_arithmetic, class Act, class A, class B>
struct return_type_2_arithmetic_phase_1;
template<class A, class B> struct return_type_2_arithmetic_phase_2;
template<class A, class B> struct return_type_2_arithmetic_phase_3;
} // namespace detail
// drop any qualifiers from the argument types within arithmetic_action
template<class A, class B, class Act>
struct return_type_2<arithmetic_action<Act>, A, B>
{
typedef typename detail::remove_reference_and_cv<A>::type plain_A;
typedef typename detail::remove_reference_and_cv<B>::type plain_B;
typedef typename
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>::type type1;
// if user defined return type, do not enter the whole arithmetic deductions
typedef typename
detail::IF_type<
boost::is_same<type1, detail::unspecified>::value,
detail::return_type_2_arithmetic_phase_1<
detail::pointer_arithmetic_traits<Act, A, B>::value, Act, A, B
>,
plain_return_type_2<arithmetic_action<Act>, plain_A, plain_B>
>::type type;
};
namespace detail {
// perform integral promotion, no pointer arithmetic
template<bool is_pointer_arithmetic, class Act, class A, class B>
struct return_type_2_arithmetic_phase_1
{
typedef typename
return_type_2_arithmetic_phase_2<
typename remove_reference_and_cv<A>::type,
typename remove_reference_and_cv<B>::type
>::type type;
};
// pointer_arithmetic
template<class Act, class A, class B>
struct return_type_2_arithmetic_phase_1<true, Act, A, B>
{
typedef typename
pointer_arithmetic_traits<Act, A, B>::type type;
};
template<class A, class B>
struct return_type_2_arithmetic_phase_2 {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -