⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spd_sdram.c

📁 linux下的BOOT程序原码,有需要的可以来下,保证好用
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * (C) Copyright 2001 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com * * Based on code by: * * Kenneth Johansson ,Ericsson AB. * kenneth.johansson@etx.ericsson.se * * hacked up by bill hunter. fixed so we could run before * serial_init and console_init. previous version avoided this by * running out of cache memory during serial/console init, then running * this code later. * * (C) Copyright 2002 * Jun Gu, Artesyn Technology, jung@artesyncp.com * Support for AMCC 440 based on OpenBIOS draminit.c from IBM. * * (C) Copyright 2005 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */#include <common.h>#include <asm/processor.h>#include <i2c.h>#include <ppc4xx.h>#ifdef CONFIG_SPD_EEPROM/* * Set default values */#ifndef CFG_I2C_SPEED#define CFG_I2C_SPEED	50000#endif#ifndef CFG_I2C_SLAVE#define CFG_I2C_SLAVE	0xFE#endif#define ONE_BILLION	1000000000#ifndef	 CONFIG_440		/* for 405 WALNUT/SYCAMORE/BUBINGA boards */#define	 SDRAM0_CFG_DCE		0x80000000#define	 SDRAM0_CFG_SRE		0x40000000#define	 SDRAM0_CFG_PME		0x20000000#define	 SDRAM0_CFG_MEMCHK	0x10000000#define	 SDRAM0_CFG_REGEN	0x08000000#define	 SDRAM0_CFG_ECCDD	0x00400000#define	 SDRAM0_CFG_EMDULR	0x00200000#define	 SDRAM0_CFG_DRW_SHIFT	(31-6)#define	 SDRAM0_CFG_BRPF_SHIFT	(31-8)#define	 SDRAM0_TR_CASL_SHIFT	(31-8)#define	 SDRAM0_TR_PTA_SHIFT	(31-13)#define	 SDRAM0_TR_CTP_SHIFT	(31-15)#define	 SDRAM0_TR_LDF_SHIFT	(31-17)#define	 SDRAM0_TR_RFTA_SHIFT	(31-29)#define	 SDRAM0_TR_RCD_SHIFT	(31-31)#define	 SDRAM0_RTR_SHIFT	(31-15)#define	 SDRAM0_ECCCFG_SHIFT	(31-11)/* SDRAM0_CFG enable macro  */#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )#define SDRAM0_BXCR_SZ_MASK	0x000e0000#define SDRAM0_BXCR_AM_MASK	0x0000e000#define SDRAM0_BXCR_SZ_SHIFT	(31-14)#define SDRAM0_BXCR_AM_SHIFT	(31-18)#define SDRAM0_BXCR_SZ(x)	( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )#define SDRAM0_BXCR_AM(x)	( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )#ifdef CONFIG_SPDDRAM_SILENT# define SPD_ERR(x) do { return 0; } while (0)#else# define SPD_ERR(x) do { printf(x); return(0); } while (0)#endif#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))/* function prototypes */int spd_read(uint addr);/* * This function is reading data from the DIMM module EEPROM over the SPD bus * and uses that to program the sdram controller. * * This works on boards that has the same schematics that the AMCC walnut has. * * Input: null for default I2C spd functions or a pointer to a custom function * returning spd_data. */long int spd_sdram(int(read_spd)(uint addr)){	int tmp,row,col;	int total_size,bank_size,bank_code;	int ecc_on;	int mode;	int bank_cnt;	int sdram0_pmit=0x07c00000;#ifndef CONFIG_405EP /* not on PPC405EP */	int sdram0_besr0=-1;	int sdram0_besr1=-1;	int sdram0_eccesr=-1;#endif	int sdram0_ecccfg;	int sdram0_rtr=0;	int sdram0_tr=0;	int sdram0_b0cr;	int sdram0_b1cr;	int sdram0_b2cr;	int sdram0_b3cr;	int sdram0_cfg=0;	int t_rp;	int t_rcd;	int t_ras;	int t_rc;	int min_cas;	PPC405_SYS_INFO sys_info;	unsigned long bus_period_x_10;	/*	 * get the board info	 */	get_sys_info(&sys_info);	bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);	if (read_spd == 0){		read_spd=spd_read;		/*		 * Make sure I2C controller is initialized		 * before continuing.		 */		i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);	}	/* Make shure we are using SDRAM */	if (read_spd(2) != 0x04) {		SPD_ERR("SDRAM - non SDRAM memory module found\n");	}	/* ------------------------------------------------------------------	 * configure memory timing register	 *	 * data from DIMM:	 * 27	IN Row Precharge Time ( t RP)	 * 29	MIN RAS to CAS Delay ( t RCD)	 * 127	 Component and Clock Detail ,clk0-clk3, junction temp, CAS	 * -------------------------------------------------------------------*/	/*	 * first figure out which cas latency mode to use	 * use the min supported mode	 */	tmp = read_spd(127) & 0x6;	if (tmp == 0x02) {		/* only cas = 2 supported */		min_cas = 2;/*		t_ck = read_spd(9); *//*		t_ac = read_spd(10); */	} else if (tmp == 0x04) {	/* only cas = 3 supported */		min_cas = 3;/*		t_ck = read_spd(9); *//*		t_ac = read_spd(10); */	} else if (tmp == 0x06) {	/* 2,3 supported, so use 2 */		min_cas = 2;/*		t_ck = read_spd(23); *//*		t_ac = read_spd(24); */	} else {		SPD_ERR("SDRAM - unsupported CAS latency \n");	}	/* get some timing values, t_rp,t_rcd,t_ras,t_rc	 */	t_rp = read_spd(27);	t_rcd = read_spd(29);	t_ras = read_spd(30);	t_rc = t_ras + t_rp;	/* The following timing calcs subtract 1 before deviding.	 * this has effect of using ceiling instead of floor rounding,	 * and also subtracting 1 to convert number to reg value	 */	/* set up CASL */	sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;	/* set up PTA */	sdram0_tr |= ((((t_rp - 1) * 10)/bus_period_x_10) & 0x3) << SDRAM0_TR_PTA_SHIFT;	/* set up CTP */	tmp = (((t_rc - t_rcd - t_rp -1) * 10) / bus_period_x_10) & 0x3;	if (tmp < 1)		tmp = 1;	sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;	/* set LDF	= 2 cycles, reg value = 1 */	sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;	/* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */	tmp = (((t_rc - 1) * 10) / bus_period_x_10) - 3;	if (tmp < 0)		tmp = 0;	if (tmp > 6)		tmp = 6;	sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;	/* set RCD = t_rcd/bus_period*/	sdram0_tr |= ((((t_rcd - 1) * 10) / bus_period_x_10) &0x3) << SDRAM0_TR_RCD_SHIFT ;	/*------------------------------------------------------------------	 * configure RTR register	 * -------------------------------------------------------------------*/	row = read_spd(3);	col = read_spd(4);	tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */	switch (tmp) {	case 0x00:		tmp = 15625;		break;	case 0x01:		tmp = 15625 / 4;		break;	case 0x02:		tmp = 15625 / 2;		break;	case 0x03:		tmp = 15625 * 2;		break;	case 0x04:		tmp = 15625 * 4;		break;	case 0x05:		tmp = 15625 * 8;		break;	default:		SPD_ERR("SDRAM - Bad refresh period \n");	}	/* convert from nsec to bus cycles */	tmp = (tmp * 10) / bus_period_x_10;	sdram0_rtr = (tmp & 0x3ff8) <<	SDRAM0_RTR_SHIFT;	/*------------------------------------------------------------------	 * determine the number of banks used	 * -------------------------------------------------------------------*/	/* byte 7:6 is module data width */	if (read_spd(7) != 0)		SPD_ERR("SDRAM - unsupported module width\n");	tmp = read_spd(6);	if (tmp < 32)		SPD_ERR("SDRAM - unsupported module width\n");	else if (tmp < 64)		bank_cnt = 1;		/* one bank per sdram side */	else if (tmp < 73)		bank_cnt = 2;	/* need two banks per side */	else if (tmp < 161)		bank_cnt = 4;	/* need four banks per side */	else		SPD_ERR("SDRAM - unsupported module width\n");	/* byte 5 is the module row count (refered to as dimm "sides") */	tmp = read_spd(5);	if (tmp == 1)		;	else if (tmp==2)		bank_cnt *= 2;	else if (tmp==4)		bank_cnt *= 4;	else		bank_cnt = 8;		/* 8 is an error code */	if (bank_cnt > 4)	/* we only have 4 banks to work with */		SPD_ERR("SDRAM - unsupported module rows for this width\n");	/* now check for ECC ability of module. We only support ECC	 *   on 32 bit wide devices with 8 bit ECC.	 */	if ((read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8)) {		sdram0_ecccfg = 0xf << SDRAM0_ECCCFG_SHIFT;		ecc_on = 1;	} else {		sdram0_ecccfg = 0;		ecc_on = 0;	}	/*------------------------------------------------------------------	 * calculate total size	 * -------------------------------------------------------------------*/	/* calculate total size and do sanity check */	tmp = read_spd(31);	total_size = 1 << 22;	/* total_size = 4MB */	/* now multiply 4M by the smallest device row density */	/* note that we don't support asymetric rows */	while (((tmp & 0x0001) == 0) && (tmp != 0)) {		total_size = total_size << 1;		tmp = tmp >> 1;	}	total_size *= read_spd(5);	/* mult by module rows (dimm sides) */	/*------------------------------------------------------------------	 * map	rows * cols * banks to a mode	 * -------------------------------------------------------------------*/	switch (row) {	case 11:		switch (col) {		case 8:			mode=4; /* mode 5 */			break;		case 9:		case 10:			mode=0; /* mode 1 */			break;		default:			SPD_ERR("SDRAM - unsupported mode\n");		}		break;	case 12:		switch (col) {		case 8:			mode=3; /* mode 4 */			break;		case 9:		case 10:			mode=1; /* mode 2 */			break;		default:			SPD_ERR("SDRAM - unsupported mode\n");		}		break;	case 13:		switch (col) {		case 8:			mode=5; /* mode 6 */			break;		case 9:		case 10:			if (read_spd(17) == 2)				mode = 6; /* mode 7 */			else				mode = 2; /* mode 3 */			break;		case 11:			mode = 2; /* mode 3 */			break;		default:			SPD_ERR("SDRAM - unsupported mode\n");		}		break;	default:		SPD_ERR("SDRAM - unsupported mode\n");	}	/*------------------------------------------------------------------	 * using the calculated values, compute the bank	 * config register values.	 * -------------------------------------------------------------------*/	sdram0_b1cr = 0;	sdram0_b2cr = 0;	sdram0_b3cr = 0;	/* compute the size of each bank */	bank_size = total_size / bank_cnt;	/* convert bank size to bank size code for ppc4xx	   by takeing log2(bank_size) - 22 */	tmp = bank_size;		/* start with tmp = bank_size */	bank_code = 0;			/* and bank_code = 0 */	while (tmp > 1) {		/* this takes log2 of tmp */		bank_code++;		/* and stores result in bank_code */		tmp = tmp >> 1;	}				/* bank_code is now log2(bank_size) */	bank_code -= 22;		/* subtract 22 to get the code */	tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;	sdram0_b0cr = (bank_size * 0) | tmp;#ifndef CONFIG_405EP /* not on PPC405EP */	if (bank_cnt > 1)		sdram0_b2cr = (bank_size * 1) | tmp;	if (bank_cnt > 2)		sdram0_b1cr = (bank_size * 2) | tmp;	if (bank_cnt > 3)		sdram0_b3cr = (bank_size * 3) | tmp;#else	/* PPC405EP chip only supports two SDRAM banks */	if (bank_cnt > 1)		sdram0_b1cr = (bank_size * 1) | tmp;	if (bank_cnt > 2)		total_size = 2 * bank_size;#endif	/*	 *   enable sdram controller DCE=1	 *  enable burst read prefetch to 32 bytes BRPF=2	 *  leave other functions off	 */	/*------------------------------------------------------------------	 * now that we've done our calculations, we are ready to	 * program all the registers.	 * -------------------------------------------------------------------*/#define mtsdram0(reg, data)  mtdcr(memcfga,reg);mtdcr(memcfgd,data)	/* disable memcontroller so updates work */	mtsdram0( mem_mcopt1, 0 );#ifndef CONFIG_405EP /* not on PPC405EP */	mtsdram0( mem_besra , sdram0_besr0 );	mtsdram0( mem_besrb , sdram0_besr1 );	mtsdram0( mem_ecccf , sdram0_ecccfg );	mtsdram0( mem_eccerr, sdram0_eccesr );#endif	mtsdram0( mem_rtr   , sdram0_rtr );	mtsdram0( mem_pmit  , sdram0_pmit );	mtsdram0( mem_mb0cf , sdram0_b0cr );	mtsdram0( mem_mb1cf , sdram0_b1cr );#ifndef CONFIG_405EP /* not on PPC405EP */	mtsdram0( mem_mb2cf , sdram0_b2cr );	mtsdram0( mem_mb3cf , sdram0_b3cr );#endif	mtsdram0( mem_sdtr1 , sdram0_tr );	/* SDRAM have a power on delay,	 500 micro should do */	udelay(500);	sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;	if (ecc_on)		sdram0_cfg |= SDRAM0_CFG_MEMCHK;	mtsdram0(mem_mcopt1, sdram0_cfg);	return (total_size);}int spd_read(uint addr){

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -