📄 calcexc.c
字号:
/* ITU-T G.729A Annex B ANSI-C Source Code Version 1.3 Last modified: August 1997 Copyright (c) 1996, France Telecom, Rockwell International, Universite de Sherbrooke. All rights reserved.*//* Computation of Comfort Noise excitation */#include <stdio.h>#include <stdlib.h>#include "typedef.h"#include "ld8a.h"#include "dtx.h"#include "basic_op.h"#include "oper_32b.h"/* Local functions */static Word16 Gauss(Word16 *seed);static Word16 Sqrt( Word32 Num);/*-----------------------------------------------------------* * procedure Calc_exc_rand * * ~~~~~~~~~~~~~ * * Computes comfort noise excitation * * for SID and not-transmitted frames * *-----------------------------------------------------------*/void Calc_exc_rand( Word16 cur_gain, /* (i) : target sample gain */ Word16 *exc, /* (i/o) : excitation array */ Word16 *seed, /* (i) : current Vad decision */ Flag flag_cod /* (i) : encoder/decoder flag */){ Word16 i, j, i_subfr; Word16 temp1, temp2; Word16 pos[4]; Word16 sign[4]; Word16 t0, frac; Word16 *cur_exc; Word16 g, Gp, Gp2; Word16 excg[L_SUBFR], excs[L_SUBFR]; Word32 L_acc, L_ener, L_k; Word16 max, hi, lo, inter_exc; Word16 sh; Word16 x1, x2; if(cur_gain == 0) { for(i=0; i<L_FRAME; i++) { exc[i] = 0; } Gp = 0; t0 = add(L_SUBFR,1); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { if(flag_cod != FLAG_DEC) update_exc_err(Gp, t0); } return; } /* Loop on subframes */ cur_exc = exc; for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { /* generate random adaptive codebook & fixed codebook parameters */ /*****************************************************************/ temp1 = Random(seed); frac = sub((temp1 & (Word16)0x0003), 1); if(sub(frac, 2) == 0) frac = 0; temp1 = shr(temp1, 2); t0 = add((temp1 & (Word16)0x003F), 40); temp1 = shr(temp1, 6); temp2 = temp1 & (Word16)0x0007; pos[0] = add(shl(temp2, 2), temp2); /* 5 * temp2 */ temp1 = shr(temp1, 3); sign[0] = temp1 & (Word16)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (Word16)0x0007; temp2 = add(shl(temp2, 2), temp2); pos[1] = add(temp2, 1); /* 5 * x + 1 */ temp1 = shr(temp1, 3); sign[1] = temp1 & (Word16)0x0001; temp1 = Random(seed); temp2 = temp1 & (Word16)0x0007; temp2 = add(shl(temp2, 2), temp2); pos[2] = add(temp2, 2); /* 5 * x + 2 */ temp1 = shr(temp1, 3); sign[2] = temp1 & (Word16)0x0001; temp1 = shr(temp1, 1); temp2 = temp1 & (Word16)0x000F; pos[3] = add((temp2 & (Word16)1), 3); /* j+3*/ temp2 = (shr(temp2, 1)) & (Word16)7; temp2 = add(shl(temp2, 2), temp2); /* 5i */ pos[3] = add(pos[3], temp2); temp1 = shr(temp1, 4); sign[3] = temp1 & (Word16)0x0001; Gp = Random(seed) & (Word16)0x1FFF; /* < 0.5 Q14 */ Gp2 = shl(Gp, 1); /* Q15 */ /* Generate gaussian excitation */ /********************************/ L_acc = 0L; for(i=0; i<L_SUBFR; i++) { temp1 = Gauss(seed); L_acc = L_mac(L_acc, temp1, temp1); excg[i] = temp1; }/* Compute fact = alpha x cur_gain * sqrt(L_SUBFR / Eg) with Eg = SUM(i=0->39) excg[i]^2 and alpha = 0.5 alpha x sqrt(L_SUBFR)/2 = 1 + FRAC1*/ L_acc = Inv_sqrt(L_shr(L_acc,1)); /* Q30 */ L_Extract(L_acc, &hi, &lo); /* cur_gain = cur_gainR << 3 */ temp1 = mult_r(cur_gain, FRAC1); temp1 = add(cur_gain, temp1); /* <=> alpha x cur_gainR x 2^2 x sqrt(L_SUBFR) */ L_acc = Mpy_32_16(hi, lo, temp1); /* fact << 17 */ sh = norm_l(L_acc); temp1 = extract_h(L_shl(L_acc, sh)); /* fact << (sh+1) */ sh = sub(sh, 14); for(i=0; i<L_SUBFR; i++) { temp2 = mult_r(excg[i], temp1); temp2 = shr_r(temp2, sh); /* shl if sh < 0 */ excg[i] = temp2; } /* generate random adaptive excitation */ /****************************************/ Pred_lt_3(cur_exc, t0, frac, L_SUBFR); /* compute adaptive + gaussian exc -> cur_exc */ /**********************************************/ max = 0; for(i=0; i<L_SUBFR; i++) { temp1 = mult_r(cur_exc[i], Gp2); temp1 = add(temp1, excg[i]); /* may overflow */ cur_exc[i] = temp1; temp1 = abs_s(temp1); if(sub(temp1,max) > 0) max = temp1; } /* rescale cur_exc -> excs */ if(max == 0) sh = 0; else { sh = sub(3, norm_s(max)); if(sh <= 0) sh = 0; } for(i=0; i<L_SUBFR; i++) { excs[i] = shr(cur_exc[i], sh); } /* Compute fixed code gain */ /***************************/ /**********************************************************/ /*** Solve EQ(X) = 4 X**2 + 2 b X + c */ /**********************************************************/ L_ener = 0L; for(i=0; i<L_SUBFR; i++) { L_ener = L_mac(L_ener, excs[i], excs[i]); } /* ener x 2^(-2sh + 1) */ /* inter_exc = b >> sh */ inter_exc = 0; for(i=0; i<4; i++) { j = pos[i]; if(sign[i] == 0) { inter_exc = sub(inter_exc, excs[j]); } else { inter_exc = add(inter_exc, excs[j]); } } /* Compute k = cur_gainR x cur_gainR x L_SUBFR */ L_acc = L_mult(cur_gain, L_SUBFR); L_acc = L_shr(L_acc, 6); temp1 = extract_l(L_acc); /* cur_gainR x L_SUBFR x 2^(-2) */ L_k = L_mult(cur_gain, temp1); /* k << 2 */ temp1 = add(1, shl(sh,1)); L_acc = L_shr(L_k, temp1); /* k x 2^(-2sh+1) */ /* Compute delta = b^2 - 4 c */ L_acc = L_sub(L_acc, L_ener); /* - 4 c x 2^(-2sh-1) */ inter_exc = shr(inter_exc, 1); L_acc = L_mac(L_acc, inter_exc, inter_exc); /* 2^(-2sh-1) */ sh = add(sh, 1); /* inter_exc = b x 2^(-sh) */ /* L_acc = delta x 2^(-2sh+1) */ if(L_acc < 0) { /* adaptive excitation = 0 */ Copy(excg, cur_exc, L_SUBFR); temp1 = abs_s(excg[(int)pos[0]]) | abs_s(excg[(int)pos[1]]); temp2 = abs_s(excg[(int)pos[2]]) | abs_s(excg[(int)pos[3]]); temp1 = temp1 | temp2; sh = ((temp1 & (Word16)0x4000) == 0) ? (Word16)1 : (Word16)2; inter_exc = 0; for(i=0; i<4; i++) { temp1 = shr(excg[(int)pos[i]], sh); if(sign[i] == 0) { inter_exc = sub(inter_exc, temp1); } else { inter_exc = add(inter_exc, temp1); } } /* inter_exc = b >> sh */ L_Extract(L_k, &hi, &lo); L_acc = Mpy_32_16(hi, lo, K0); /* k x (1- alpha^2) << 2 */ temp1 = sub(shl(sh, 1), 1); /* temp1 > 0 */ L_acc = L_shr(L_acc, temp1); /* 4k x (1 - alpha^2) << (-2sh+1) */ L_acc = L_mac(L_acc, inter_exc, inter_exc); /* delta << (-2sh+1) */ Gp = 0; } temp2 = Sqrt(L_acc); /* >> sh */ x1 = sub(temp2, inter_exc); x2 = negate(add(inter_exc, temp2)); /* x 2^(-sh+2) */ if(sub(abs_s(x2),abs_s(x1)) < 0) x1 = x2; temp1 = sub(2, sh); g = shr_r(x1, temp1); /* shl if temp1 < 0 */ if(g >= 0) { if(sub(g, G_MAX) > 0) g = G_MAX; } else { if(add(g, G_MAX) < 0) g = negate(G_MAX); } /* Update cur_exc with ACELP excitation */ for(i=0; i<4; i++) { j = pos[i]; if(sign[i] != 0) { cur_exc[j] = add(cur_exc[j], g); } else { cur_exc[j] = sub(cur_exc[j], g); } } if(flag_cod != FLAG_DEC) update_exc_err(Gp, t0); cur_exc += L_SUBFR; } /* end of loop on subframes */ return;}/*-----------------------------------------------------------* * Local procedures * * ~~~~~~~~~~~~~~~~ * *-----------------------------------------------------------*//* Gaussian generation *//***********************/static Word16 Gauss(Word16 *seed){/**** Xi = uniform v.a. in [-32768, 32767] ****//**** Z = SUM(i=1->12) Xi / 2 x 32768 is N(0,1) ****//**** output : Z x 512 < 2^12 ****/ Word16 i; Word16 temp; Word32 L_acc; L_acc = 0L; for(i=0; i<12; i++) { L_acc = L_add(L_acc, L_deposit_l(Random(seed))); } L_acc = L_shr(L_acc, 7); temp = extract_l(L_acc); return(temp);}/* Square root function : returns sqrt(Num/2) *//**********************************************/static Word16 Sqrt( Word32 Num ){ Word16 i ; Word16 Rez = (Word16) 0 ; Word16 Exp = (Word16) 0x4000 ; Word32 Acc, L_temp; for ( i = 0 ; i < 14 ; i ++ ) { Acc = L_mult(add(Rez, Exp), add(Rez, Exp) ); L_temp = L_sub(Num, Acc); if(L_temp >= 0L) Rez = add( Rez, Exp); Exp = shr( Exp, (Word16) 1 ) ; } return Rez ;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -