⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtx.c

📁 g729b_pc.rar是G729语音压缩标准的附件B的C语言实现标准源代码。
💻 C
字号:
/*   ITU-T G.729A Annex B     ANSI-C Source Code   Version 1.3    Last modified: August 1997   Copyright (c) 1996, France Telecom, Rockwell International,                       Universite de Sherbrooke.   All rights reserved.*//* DTX and Comfort Noise Generator - Encoder part */#include <stdio.h>#include <stdlib.h>#include "typedef.h"#include "basic_op.h"#include "ld8a.h"#include "oper_32b.h"#include "tab_ld8a.h"#include "vad.h"#include "dtx.h"#include "tab_dtx.h"#include "sid.h"/* Static Variables */static Word16 lspSid_q[M] ;static Word16 pastCoeff[MP1];static Word16 RCoeff[MP1];static Word16 sh_RCoeff;static Word16 Acf[SIZ_ACF];static Word16 sh_Acf[NB_CURACF];static Word16 sumAcf[SIZ_SUMACF];static Word16 sh_sumAcf[NB_SUMACF];static Word16 ener[NB_GAIN];static Word16 sh_ener[NB_GAIN];static Word16 fr_cur;static Word16 cur_gain;static Word16 nb_ener;static Word16 sid_gain;static Word16 flag_chang;static Word16 prev_energy;static Word16 count_fr0;/* Local functions */static void Calc_pastfilt(Word16 *Coeff);static void Calc_RCoeff(Word16 *Coeff, Word16 *RCoeff, Word16 *sh_RCoeff);static Word16 Cmp_filt(Word16 *RCoeff, Word16 sh_RCoeff, Word16 *acf,                                        Word16 alpha, Word16 Fracthresh);static void Calc_sum_acf(Word16 *acf, Word16 *sh_acf,                    Word16 *sum, Word16 *sh_sum, Word16 nb);static void Update_sumAcf(void);/*-----------------------------------------------------------* * procedure Init_Cod_cng:                                   * *           ~~~~~~~~~~~~                                    * *   Initialize variables used for dtx at the encoder        * *-----------------------------------------------------------*/void Init_Cod_cng(void){  Word16 i;  for(i=0; i<SIZ_SUMACF; i++) sumAcf[i] = 0;  for(i=0; i<NB_SUMACF; i++) sh_sumAcf[i] = 40;  for(i=0; i<SIZ_ACF; i++) Acf[i] = 0;  for(i=0; i<NB_CURACF; i++) sh_Acf[i] = 40;  for(i=0; i<NB_GAIN; i++) sh_ener[i] = 40;  for(i=0; i<NB_GAIN; i++) ener[i] = 0;  cur_gain = 0;  fr_cur = 0;  flag_chang = 0;  return;}/*-----------------------------------------------------------* * procedure Cod_cng:                                        * *           ~~~~~~~~                                        * *   computes DTX decision                                   * *   encodes SID frames                                      * *   computes CNG excitation for encoder update              * *-----------------------------------------------------------*/void Cod_cng(  Word16 *exc,          /* (i/o) : excitation array                     */  Word16 pastVad,       /* (i)   : previous VAD decision                */  Word16 *lsp_old_q,    /* (i/o) : previous quantized lsp               */  Word16 *Aq,           /* (o)   : set of interpolated LPC coefficients */  Word16 *ana,          /* (o)   : coded SID parameters                 */  Word16 freq_prev[MA_NP][M],                        /* (i/o) : previous LPS for quantization        */  Word16 *seed          /* (i/o) : random generator seed                */){  Word16 i;  Word16 curAcf[MP1];  Word16 bid[M], zero[MP1];  Word16 curCoeff[MP1];  Word16 lsp_new[M];  Word16 *lpcCoeff;  Word16 cur_igain;  Word16 energyq, temp;  /* Update Ener and sh_ener */  for(i = NB_GAIN-1; i>=1; i--) {    ener[i] = ener[i-1];    sh_ener[i] = sh_ener[i-1];  }  /* Compute current Acfs */  Calc_sum_acf(Acf, sh_Acf, curAcf, &sh_ener[0], NB_CURACF);  /* Compute LPC coefficients and residual energy */  if(curAcf[0] == 0) {    ener[0] = 0;                /* should not happen */  }  else {    Set_zero(zero, MP1);    Levinson(curAcf, zero, curCoeff, bid, &ener[0]);  }  /* if first frame of silence => SID frame */  if(pastVad != 0) {    ana[0] = 2;    count_fr0 = 0;    nb_ener = 1;    Qua_Sidgain(ener, sh_ener, nb_ener, &energyq, &cur_igain);  }  else {    nb_ener = add(nb_ener, 1);    if(sub(nb_ener, NB_GAIN) > 0) nb_ener = NB_GAIN;    Qua_Sidgain(ener, sh_ener, nb_ener, &energyq, &cur_igain);          /* Compute stationarity of current filter   */    /* versus reference filter                  */    if(Cmp_filt(RCoeff, sh_RCoeff, curAcf, ener[0], FRAC_THRESH1) != 0) {      flag_chang = 1;    }          /* compare energy difference between current frame and last frame */    temp = abs_s(sub(prev_energy, energyq));    temp = sub(temp, 2);    if (temp > 0) flag_chang = 1;          count_fr0 = add(count_fr0, 1);    if(sub(count_fr0, FR_SID_MIN) < 0) {      ana[0] = 0;               /* no transmission */    }    else {      if(flag_chang != 0) {        ana[0] = 2;             /* transmit SID frame */      }      else{        ana[0] = 0;      }              count_fr0 = FR_SID_MIN;   /* to avoid overflow */    }  }  if(sub(ana[0], 2) == 0) {          /* Reset frame count and change flag */    count_fr0 = 0;    flag_chang = 0;          /* Compute past average filter */    Calc_pastfilt(pastCoeff);    Calc_RCoeff(pastCoeff, RCoeff, &sh_RCoeff);    /* Compute stationarity of current filter   */    /* versus past average filter               */    /* if stationary */    /* transmit average filter => new ref. filter */    if(Cmp_filt(RCoeff, sh_RCoeff, curAcf, ener[0], FRAC_THRESH2) == 0) {      lpcCoeff = pastCoeff;    }    /* else */    /* transmit current filter => new ref. filter */    else {      lpcCoeff = curCoeff;      Calc_RCoeff(curCoeff, RCoeff, &sh_RCoeff);    }    /* Compute SID frame codes */    Az_lsp(lpcCoeff, lsp_new, lsp_old_q); /* From A(z) to lsp */    /* LSP quantization */    lsfq_noise(lsp_new, lspSid_q, freq_prev, &ana[1]);    prev_energy = energyq;    ana[4] = cur_igain;    sid_gain = tab_Sidgain[cur_igain];  } /* end of SID frame case */  /* Compute new excitation */  if(pastVad != 0) {    cur_gain = sid_gain;  }  else {    cur_gain = mult_r(cur_gain, A_GAIN0);    cur_gain = add(cur_gain, mult_r(sid_gain, A_GAIN1));  }  Calc_exc_rand(cur_gain, exc, seed, FLAG_COD);  Int_qlpc(lsp_old_q, lspSid_q, Aq);  for(i=0; i<M; i++) {    lsp_old_q[i]   = lspSid_q[i];  }  /* Update sumAcf if fr_cur = 0 */  if(fr_cur == 0) {    Update_sumAcf();  }  return;}/*-----------------------------------------------------------* * procedure Update_cng:                                     * *           ~~~~~~~~~~                                      * *   Updates autocorrelation arrays                          * *   used for DTX/CNG                                        * *   If Vad=1 : updating of array sumAcf                     * *-----------------------------------------------------------*/void Update_cng(  Word16 *r_h,      /* (i) :   MSB of frame autocorrelation        */  Word16 exp_r,     /* (i) :   scaling factor associated           */  Word16 Vad        /* (i) :   current Vad decision                */){  Word16 i;  Word16 *ptr1, *ptr2;  /* Update Acf and shAcf */  ptr1 = Acf + SIZ_ACF - 1;  ptr2 = ptr1 - MP1;  for(i=0; i<(SIZ_ACF-MP1); i++) {    *ptr1-- = *ptr2--;  }  for(i=NB_CURACF-1; i>=1; i--) {    sh_Acf[i] = sh_Acf[i-1];  }  /* Save current Acf */  sh_Acf[0] = negate(add(16, exp_r));  for(i=0; i<MP1; i++) {    Acf[i] = r_h[i];  }  fr_cur = add(fr_cur, 1);  if(sub(fr_cur, NB_CURACF) == 0) {    fr_cur = 0;    if(Vad != 0) {      Update_sumAcf();    }  }  return;}/*-----------------------------------------------------------* *         Local procedures                                  * *         ~~~~~~~~~~~~~~~~                                  * *-----------------------------------------------------------*//* Compute scaled autocorr of LPC coefficients used for Itakura distance *//*************************************************************************/static void Calc_RCoeff(Word16 *Coeff, Word16 *RCoeff, Word16 *sh_RCoeff){  Word16 i, j;  Word16 sh1;  Word32 L_acc;    /* RCoeff[0] = SUM(j=0->M) Coeff[j] ** 2 */  L_acc = 0L;  for(j=0; j <= M; j++) {    L_acc = L_mac(L_acc, Coeff[j], Coeff[j]);  }    /* Compute exponent RCoeff */  sh1 = norm_l(L_acc);  L_acc = L_shl(L_acc, sh1);  RCoeff[0] = round(L_acc);    /* RCoeff[i] = SUM(j=0->M-i) Coeff[j] * Coeff[j+i] */  for(i=1; i<=M; i++) {    L_acc = 0L;    for(j=0; j<=M-i; j++) {      L_acc = L_mac(L_acc, Coeff[j], Coeff[j+i]);    }    L_acc = L_shl(L_acc, sh1);    RCoeff[i] = round(L_acc);  }  *sh_RCoeff = sh1;  return;}/* Compute Itakura distance and compare to threshold *//*****************************************************/static Word16 Cmp_filt(Word16 *RCoeff, Word16 sh_RCoeff, Word16 *acf,                                        Word16 alpha, Word16 FracThresh){  Word32 L_temp0, L_temp1;  Word16 temp1, temp2, sh[2], ind;  Word16 i;  Word16 diff, flag;  extern Flag Overflow;  sh[0] = 0;  sh[1] = 0;  ind = 1;  flag = 0;  do {    Overflow = 0;    temp1 = shr(RCoeff[0], sh[0]);    temp2 = shr(acf[0], sh[1]);    L_temp0 = L_shr(L_mult(temp1, temp2),1);    for(i=1; i <= M; i++) {      temp1 = shr(RCoeff[i], sh[0]);      temp2 = shr(acf[i], sh[1]);      L_temp0 = L_mac(L_temp0, temp1, temp2);    }    if(Overflow != 0) {      sh[(int)ind] = add(sh[(int)ind], 1);      ind = sub(1, ind);    }    else flag = 1;  } while (flag == 0);      temp1 = mult_r(alpha, FracThresh);  L_temp1 = L_add(L_deposit_l(temp1), L_deposit_l(alpha));  temp1 = add(sh_RCoeff, 9);  /* 9 = Lpc_justif. * 2 - 16 + 1 */  temp2 = add(sh[0], sh[1]);  temp1 = sub(temp1, temp2);  L_temp1 = L_shl(L_temp1, temp1);    L_temp0 = L_sub(L_temp0, L_temp1);  if(L_temp0 > 0L) diff = 1;  else diff = 0;  return(diff);}/* Compute past average filter *//*******************************/static void Calc_pastfilt(Word16 *Coeff){  Word16 i;  Word16 s_sumAcf[MP1];  Word16 bid[M], zero[MP1];  Word16 temp;    Calc_sum_acf(sumAcf, sh_sumAcf, s_sumAcf, &temp, NB_SUMACF);    if(s_sumAcf[0] == 0L) {    Coeff[0] = 4096;    for(i=1; i<=M; i++) Coeff[i] = 0;    return;  }  Set_zero(zero, MP1);  Levinson(s_sumAcf, zero, Coeff, bid, &temp);  return;}/* Update sumAcf *//*****************/static void Update_sumAcf(void){  Word16 *ptr1, *ptr2;  Word16 i;  /*** Move sumAcf ***/  ptr1 = sumAcf + SIZ_SUMACF - 1;  ptr2 = ptr1 - MP1;  for(i=0; i<(SIZ_SUMACF-MP1); i++) {    *ptr1-- = *ptr2--;  }  for(i=NB_SUMACF-1; i>=1; i--) {    sh_sumAcf[i] = sh_sumAcf[i-1];  }  /* Compute new sumAcf */  Calc_sum_acf(Acf, sh_Acf, sumAcf, sh_sumAcf, NB_CURACF);  return;}/* Compute sum of acfs (curAcf, sumAcf or s_sumAcf) *//****************************************************/static void Calc_sum_acf(Word16 *acf, Word16 *sh_acf,                         Word16 *sum, Word16 *sh_sum, Word16 nb){  Word16 *ptr1;  Word32 L_temp, L_tab[MP1];  Word16 sh0, temp;  Word16 i, j;    /* Compute sum = sum of nb acfs */  /* Find sh_acf minimum */  sh0 = sh_acf[0];  for(i=1; i<nb; i++) {    if(sub(sh_acf[i], sh0) < 0) sh0 = sh_acf[i];  }  sh0 = add(sh0, 14);           /* 2 bits of margin */  for(j=0; j<MP1; j++) {    L_tab[j] = 0L;  }  ptr1 = acf;  for(i=0; i<nb; i++) {    temp = sub(sh0, sh_acf[i]);    for(j=0; j<MP1; j++) {      L_temp = L_deposit_l(*ptr1++);      L_temp = L_shl(L_temp, temp); /* shift right if temp<0 */      L_tab[j] = L_add(L_tab[j], L_temp);    }  }   temp = norm_l(L_tab[0]);  for(i=0; i<=M; i++) {    sum[i] = extract_h(L_shl(L_tab[i], temp));  }  temp = sub(temp, 16);  *sh_sum = add(sh0, temp);  return;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -