📄 dtx.c
字号:
/* ITU-T G.729A Annex B ANSI-C Source Code Version 1.3 Last modified: August 1997 Copyright (c) 1996, France Telecom, Rockwell International, Universite de Sherbrooke. All rights reserved.*//* DTX and Comfort Noise Generator - Encoder part */#include <stdio.h>#include <stdlib.h>#include "typedef.h"#include "basic_op.h"#include "ld8a.h"#include "oper_32b.h"#include "tab_ld8a.h"#include "vad.h"#include "dtx.h"#include "tab_dtx.h"#include "sid.h"/* Static Variables */static Word16 lspSid_q[M] ;static Word16 pastCoeff[MP1];static Word16 RCoeff[MP1];static Word16 sh_RCoeff;static Word16 Acf[SIZ_ACF];static Word16 sh_Acf[NB_CURACF];static Word16 sumAcf[SIZ_SUMACF];static Word16 sh_sumAcf[NB_SUMACF];static Word16 ener[NB_GAIN];static Word16 sh_ener[NB_GAIN];static Word16 fr_cur;static Word16 cur_gain;static Word16 nb_ener;static Word16 sid_gain;static Word16 flag_chang;static Word16 prev_energy;static Word16 count_fr0;/* Local functions */static void Calc_pastfilt(Word16 *Coeff);static void Calc_RCoeff(Word16 *Coeff, Word16 *RCoeff, Word16 *sh_RCoeff);static Word16 Cmp_filt(Word16 *RCoeff, Word16 sh_RCoeff, Word16 *acf, Word16 alpha, Word16 Fracthresh);static void Calc_sum_acf(Word16 *acf, Word16 *sh_acf, Word16 *sum, Word16 *sh_sum, Word16 nb);static void Update_sumAcf(void);/*-----------------------------------------------------------* * procedure Init_Cod_cng: * * ~~~~~~~~~~~~ * * Initialize variables used for dtx at the encoder * *-----------------------------------------------------------*/void Init_Cod_cng(void){ Word16 i; for(i=0; i<SIZ_SUMACF; i++) sumAcf[i] = 0; for(i=0; i<NB_SUMACF; i++) sh_sumAcf[i] = 40; for(i=0; i<SIZ_ACF; i++) Acf[i] = 0; for(i=0; i<NB_CURACF; i++) sh_Acf[i] = 40; for(i=0; i<NB_GAIN; i++) sh_ener[i] = 40; for(i=0; i<NB_GAIN; i++) ener[i] = 0; cur_gain = 0; fr_cur = 0; flag_chang = 0; return;}/*-----------------------------------------------------------* * procedure Cod_cng: * * ~~~~~~~~ * * computes DTX decision * * encodes SID frames * * computes CNG excitation for encoder update * *-----------------------------------------------------------*/void Cod_cng( Word16 *exc, /* (i/o) : excitation array */ Word16 pastVad, /* (i) : previous VAD decision */ Word16 *lsp_old_q, /* (i/o) : previous quantized lsp */ Word16 *Aq, /* (o) : set of interpolated LPC coefficients */ Word16 *ana, /* (o) : coded SID parameters */ Word16 freq_prev[MA_NP][M], /* (i/o) : previous LPS for quantization */ Word16 *seed /* (i/o) : random generator seed */){ Word16 i; Word16 curAcf[MP1]; Word16 bid[M], zero[MP1]; Word16 curCoeff[MP1]; Word16 lsp_new[M]; Word16 *lpcCoeff; Word16 cur_igain; Word16 energyq, temp; /* Update Ener and sh_ener */ for(i = NB_GAIN-1; i>=1; i--) { ener[i] = ener[i-1]; sh_ener[i] = sh_ener[i-1]; } /* Compute current Acfs */ Calc_sum_acf(Acf, sh_Acf, curAcf, &sh_ener[0], NB_CURACF); /* Compute LPC coefficients and residual energy */ if(curAcf[0] == 0) { ener[0] = 0; /* should not happen */ } else { Set_zero(zero, MP1); Levinson(curAcf, zero, curCoeff, bid, &ener[0]); } /* if first frame of silence => SID frame */ if(pastVad != 0) { ana[0] = 2; count_fr0 = 0; nb_ener = 1; Qua_Sidgain(ener, sh_ener, nb_ener, &energyq, &cur_igain); } else { nb_ener = add(nb_ener, 1); if(sub(nb_ener, NB_GAIN) > 0) nb_ener = NB_GAIN; Qua_Sidgain(ener, sh_ener, nb_ener, &energyq, &cur_igain); /* Compute stationarity of current filter */ /* versus reference filter */ if(Cmp_filt(RCoeff, sh_RCoeff, curAcf, ener[0], FRAC_THRESH1) != 0) { flag_chang = 1; } /* compare energy difference between current frame and last frame */ temp = abs_s(sub(prev_energy, energyq)); temp = sub(temp, 2); if (temp > 0) flag_chang = 1; count_fr0 = add(count_fr0, 1); if(sub(count_fr0, FR_SID_MIN) < 0) { ana[0] = 0; /* no transmission */ } else { if(flag_chang != 0) { ana[0] = 2; /* transmit SID frame */ } else{ ana[0] = 0; } count_fr0 = FR_SID_MIN; /* to avoid overflow */ } } if(sub(ana[0], 2) == 0) { /* Reset frame count and change flag */ count_fr0 = 0; flag_chang = 0; /* Compute past average filter */ Calc_pastfilt(pastCoeff); Calc_RCoeff(pastCoeff, RCoeff, &sh_RCoeff); /* Compute stationarity of current filter */ /* versus past average filter */ /* if stationary */ /* transmit average filter => new ref. filter */ if(Cmp_filt(RCoeff, sh_RCoeff, curAcf, ener[0], FRAC_THRESH2) == 0) { lpcCoeff = pastCoeff; } /* else */ /* transmit current filter => new ref. filter */ else { lpcCoeff = curCoeff; Calc_RCoeff(curCoeff, RCoeff, &sh_RCoeff); } /* Compute SID frame codes */ Az_lsp(lpcCoeff, lsp_new, lsp_old_q); /* From A(z) to lsp */ /* LSP quantization */ lsfq_noise(lsp_new, lspSid_q, freq_prev, &ana[1]); prev_energy = energyq; ana[4] = cur_igain; sid_gain = tab_Sidgain[cur_igain]; } /* end of SID frame case */ /* Compute new excitation */ if(pastVad != 0) { cur_gain = sid_gain; } else { cur_gain = mult_r(cur_gain, A_GAIN0); cur_gain = add(cur_gain, mult_r(sid_gain, A_GAIN1)); } Calc_exc_rand(cur_gain, exc, seed, FLAG_COD); Int_qlpc(lsp_old_q, lspSid_q, Aq); for(i=0; i<M; i++) { lsp_old_q[i] = lspSid_q[i]; } /* Update sumAcf if fr_cur = 0 */ if(fr_cur == 0) { Update_sumAcf(); } return;}/*-----------------------------------------------------------* * procedure Update_cng: * * ~~~~~~~~~~ * * Updates autocorrelation arrays * * used for DTX/CNG * * If Vad=1 : updating of array sumAcf * *-----------------------------------------------------------*/void Update_cng( Word16 *r_h, /* (i) : MSB of frame autocorrelation */ Word16 exp_r, /* (i) : scaling factor associated */ Word16 Vad /* (i) : current Vad decision */){ Word16 i; Word16 *ptr1, *ptr2; /* Update Acf and shAcf */ ptr1 = Acf + SIZ_ACF - 1; ptr2 = ptr1 - MP1; for(i=0; i<(SIZ_ACF-MP1); i++) { *ptr1-- = *ptr2--; } for(i=NB_CURACF-1; i>=1; i--) { sh_Acf[i] = sh_Acf[i-1]; } /* Save current Acf */ sh_Acf[0] = negate(add(16, exp_r)); for(i=0; i<MP1; i++) { Acf[i] = r_h[i]; } fr_cur = add(fr_cur, 1); if(sub(fr_cur, NB_CURACF) == 0) { fr_cur = 0; if(Vad != 0) { Update_sumAcf(); } } return;}/*-----------------------------------------------------------* * Local procedures * * ~~~~~~~~~~~~~~~~ * *-----------------------------------------------------------*//* Compute scaled autocorr of LPC coefficients used for Itakura distance *//*************************************************************************/static void Calc_RCoeff(Word16 *Coeff, Word16 *RCoeff, Word16 *sh_RCoeff){ Word16 i, j; Word16 sh1; Word32 L_acc; /* RCoeff[0] = SUM(j=0->M) Coeff[j] ** 2 */ L_acc = 0L; for(j=0; j <= M; j++) { L_acc = L_mac(L_acc, Coeff[j], Coeff[j]); } /* Compute exponent RCoeff */ sh1 = norm_l(L_acc); L_acc = L_shl(L_acc, sh1); RCoeff[0] = round(L_acc); /* RCoeff[i] = SUM(j=0->M-i) Coeff[j] * Coeff[j+i] */ for(i=1; i<=M; i++) { L_acc = 0L; for(j=0; j<=M-i; j++) { L_acc = L_mac(L_acc, Coeff[j], Coeff[j+i]); } L_acc = L_shl(L_acc, sh1); RCoeff[i] = round(L_acc); } *sh_RCoeff = sh1; return;}/* Compute Itakura distance and compare to threshold *//*****************************************************/static Word16 Cmp_filt(Word16 *RCoeff, Word16 sh_RCoeff, Word16 *acf, Word16 alpha, Word16 FracThresh){ Word32 L_temp0, L_temp1; Word16 temp1, temp2, sh[2], ind; Word16 i; Word16 diff, flag; extern Flag Overflow; sh[0] = 0; sh[1] = 0; ind = 1; flag = 0; do { Overflow = 0; temp1 = shr(RCoeff[0], sh[0]); temp2 = shr(acf[0], sh[1]); L_temp0 = L_shr(L_mult(temp1, temp2),1); for(i=1; i <= M; i++) { temp1 = shr(RCoeff[i], sh[0]); temp2 = shr(acf[i], sh[1]); L_temp0 = L_mac(L_temp0, temp1, temp2); } if(Overflow != 0) { sh[(int)ind] = add(sh[(int)ind], 1); ind = sub(1, ind); } else flag = 1; } while (flag == 0); temp1 = mult_r(alpha, FracThresh); L_temp1 = L_add(L_deposit_l(temp1), L_deposit_l(alpha)); temp1 = add(sh_RCoeff, 9); /* 9 = Lpc_justif. * 2 - 16 + 1 */ temp2 = add(sh[0], sh[1]); temp1 = sub(temp1, temp2); L_temp1 = L_shl(L_temp1, temp1); L_temp0 = L_sub(L_temp0, L_temp1); if(L_temp0 > 0L) diff = 1; else diff = 0; return(diff);}/* Compute past average filter *//*******************************/static void Calc_pastfilt(Word16 *Coeff){ Word16 i; Word16 s_sumAcf[MP1]; Word16 bid[M], zero[MP1]; Word16 temp; Calc_sum_acf(sumAcf, sh_sumAcf, s_sumAcf, &temp, NB_SUMACF); if(s_sumAcf[0] == 0L) { Coeff[0] = 4096; for(i=1; i<=M; i++) Coeff[i] = 0; return; } Set_zero(zero, MP1); Levinson(s_sumAcf, zero, Coeff, bid, &temp); return;}/* Update sumAcf *//*****************/static void Update_sumAcf(void){ Word16 *ptr1, *ptr2; Word16 i; /*** Move sumAcf ***/ ptr1 = sumAcf + SIZ_SUMACF - 1; ptr2 = ptr1 - MP1; for(i=0; i<(SIZ_SUMACF-MP1); i++) { *ptr1-- = *ptr2--; } for(i=NB_SUMACF-1; i>=1; i--) { sh_sumAcf[i] = sh_sumAcf[i-1]; } /* Compute new sumAcf */ Calc_sum_acf(Acf, sh_Acf, sumAcf, sh_sumAcf, NB_CURACF); return;}/* Compute sum of acfs (curAcf, sumAcf or s_sumAcf) *//****************************************************/static void Calc_sum_acf(Word16 *acf, Word16 *sh_acf, Word16 *sum, Word16 *sh_sum, Word16 nb){ Word16 *ptr1; Word32 L_temp, L_tab[MP1]; Word16 sh0, temp; Word16 i, j; /* Compute sum = sum of nb acfs */ /* Find sh_acf minimum */ sh0 = sh_acf[0]; for(i=1; i<nb; i++) { if(sub(sh_acf[i], sh0) < 0) sh0 = sh_acf[i]; } sh0 = add(sh0, 14); /* 2 bits of margin */ for(j=0; j<MP1; j++) { L_tab[j] = 0L; } ptr1 = acf; for(i=0; i<nb; i++) { temp = sub(sh0, sh_acf[i]); for(j=0; j<MP1; j++) { L_temp = L_deposit_l(*ptr1++); L_temp = L_shl(L_temp, temp); /* shift right if temp<0 */ L_tab[j] = L_add(L_tab[j], L_temp); } } temp = norm_l(L_tab[0]); for(i=0; i<=M; i++) { sum[i] = extract_h(L_shl(L_tab[i], temp)); } temp = sub(temp, 16); *sh_sum = add(sh0, temp); return;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -