📄 gsl_linalg.h
字号:
/* linalg/gsl_linalg.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __GSL_LINALG_H__
#define __GSL_LINALG_H__
#include <gsl/gsl_mode.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
#define __BEGIN_DECLS extern "C" {
#define __END_DECLS }
#else
#define __BEGIN_DECLS /* empty */
#define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
typedef enum
{
GSL_LINALG_MOD_NONE = 0,
GSL_LINALG_MOD_TRANSPOSE = 1,
GSL_LINALG_MOD_CONJUGATE = 2
}
gsl_linalg_matrix_mod_t;
/* Note: You can now use the gsl_blas_dgemm function instead of matmult */
/* Simple implementation of matrix multiply.
* Calculates C = A.B
*
* exceptions: GSL_EBADLEN
*/
int gsl_linalg_matmult (const gsl_matrix * A,
const gsl_matrix * B,
gsl_matrix * C);
/* Simple implementation of matrix multiply.
* Allows transposition of either matrix, so it
* can compute A.B or Trans(A).B or A.Trans(B) or Trans(A).Trans(B)
*
* exceptions: GSL_EBADLEN
*/
int gsl_linalg_matmult_mod (const gsl_matrix * A,
gsl_linalg_matrix_mod_t modA,
const gsl_matrix * B,
gsl_linalg_matrix_mod_t modB,
gsl_matrix * C);
/* Calculate the matrix exponential by the scaling and
* squaring method described in Moler + Van Loan,
* SIAM Rev 20, 801 (1978). The mode argument allows
* choosing an optimal strategy, from the table
* given in the paper, for a given precision.
*
* exceptions: GSL_ENOTSQR, GSL_EBADLEN
*/
int gsl_linalg_exponential_ss(
const gsl_matrix * A,
gsl_matrix * eA,
gsl_mode_t mode
);
/* Householder Transformations */
double gsl_linalg_householder_transform (gsl_vector * v);
gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * v);
int gsl_linalg_householder_hm (double tau,
const gsl_vector * v,
gsl_matrix * A);
int gsl_linalg_householder_mh (double tau,
const gsl_vector * v,
gsl_matrix * A);
int gsl_linalg_householder_hv (double tau,
const gsl_vector * v,
gsl_vector * w);
int gsl_linalg_householder_hm1 (double tau,
gsl_matrix * A);
int gsl_linalg_complex_householder_hm (gsl_complex tau,
const gsl_vector_complex * v,
gsl_matrix_complex * A);
int gsl_linalg_complex_householder_hv (gsl_complex tau,
const gsl_vector_complex * v,
gsl_vector_complex * w);
/* Singular Value Decomposition
* exceptions:
*/
int
gsl_linalg_SV_decomp (gsl_matrix * A,
gsl_matrix * V,
gsl_vector * S,
gsl_vector * work);
int
gsl_linalg_SV_decomp_mod (gsl_matrix * A,
gsl_matrix * X,
gsl_matrix * V,
gsl_vector * S,
gsl_vector * work);
int gsl_linalg_SV_decomp_jacobi (gsl_matrix * A,
gsl_matrix * Q,
gsl_vector * S);
int
gsl_linalg_SV_solve (const gsl_matrix * U,
const gsl_matrix * Q,
const gsl_vector * S,
const gsl_vector * b,
gsl_vector * x);
/* LU Decomposition, Gaussian elimination with partial pivoting
*/
int gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * p, int *signum);
int gsl_linalg_LU_solve (const gsl_matrix * LU,
const gsl_permutation * p,
const gsl_vector * b,
gsl_vector * x);
int gsl_linalg_LU_svx (const gsl_matrix * LU,
const gsl_permutation * p,
gsl_vector * x);
int gsl_linalg_LU_refine (const gsl_matrix * A,
const gsl_matrix * LU,
const gsl_permutation * p,
const gsl_vector * b,
gsl_vector * x,
gsl_vector * residual);
int gsl_linalg_LU_invert (const gsl_matrix * LU,
const gsl_permutation * p,
gsl_matrix * inverse);
double gsl_linalg_LU_det (gsl_matrix * LU, int signum);
double gsl_linalg_LU_lndet (gsl_matrix * LU);
int gsl_linalg_LU_sgndet (gsl_matrix * lu, int signum);
/* Complex LU Decomposition */
int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A,
gsl_permutation * p,
int *signum);
int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU,
const gsl_permutation * p,
const gsl_vector_complex * b,
gsl_vector_complex * x);
int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU,
const gsl_permutation * p,
gsl_vector_complex * x);
int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A,
const gsl_matrix_complex * LU,
const gsl_permutation * p,
const gsl_vector_complex * b,
gsl_vector_complex * x,
gsl_vector_complex * residual);
int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU,
const gsl_permutation * p,
gsl_matrix_complex * inverse);
gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * LU,
int signum);
double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU);
gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU,
int signum);
/* QR decomposition */
int gsl_linalg_QR_decomp (gsl_matrix * A,
gsl_vector * tau);
int gsl_linalg_QR_solve (const gsl_matrix * QR,
const gsl_vector * tau,
const gsl_vector * b,
gsl_vector * x);
int gsl_linalg_QR_svx (const gsl_matrix * QR,
const gsl_vector * tau,
gsl_vector * x);
int gsl_linalg_QR_lssolve (const gsl_matrix * QR,
const gsl_vector * tau,
const gsl_vector * b,
gsl_vector * x,
gsl_vector * residual);
int gsl_linalg_QR_QRsolve (gsl_matrix * Q,
gsl_matrix * R,
const gsl_vector * b,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -