📄 fermi_dirac.c
字号:
/* specfunc/fermi_dirac.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author: G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_exp.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_sf_hyperg.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_zeta.h>#include <gsl/gsl_sf_fermi_dirac.h>#include "error.h"#include "chebyshev.h"#include "cheb_eval.c"#define locEPS (1000.0*GSL_DBL_EPSILON)/* Chebyshev fit for F_{1}(t); -1 < t < 1, -1 < x < 1 */static double fd_1_a_data[22] = { 1.8949340668482264365, 0.7237719066890052793, 0.1250000000000000000, 0.0101065196435973942, 0.0, -0.0000600615242174119, 0.0, 6.816528764623e-7, 0.0, -9.5895779195e-9, 0.0, 1.515104135e-10, 0.0, -2.5785616e-12, 0.0, 4.62270e-14, 0.0, -8.612e-16, 0.0, 1.65e-17, 0.0, -3.e-19};static cheb_series fd_1_a_cs = { fd_1_a_data, 21, -1, 1, 12};/* Chebyshev fit for F_{1}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */static double fd_1_b_data[22] = { 10.409136795234611872, 3.899445098225161947, 0.513510935510521222, 0.010618736770218426, -0.001584468020659694, 0.000146139297161640, -1.408095734499e-6, -2.177993899484e-6, 3.91423660640e-7, -2.3860262660e-8, -4.138309573e-9, 1.283965236e-9, -1.39695990e-10, -4.907743e-12, 4.399878e-12, -7.17291e-13, 2.4320e-14, 1.4230e-14, -3.446e-15, 2.93e-16, 3.7e-17, -1.6e-17};static cheb_series fd_1_b_cs = { fd_1_b_data, 21, -1, 1, 11};/* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */static double fd_1_c_data[23] = { 56.78099449124299762, 21.00718468237668011, 2.24592457063193457, 0.00173793640425994, -0.00058716468739423, 0.00016306958492437, -0.00003817425583020, 7.64527252009e-6, -1.31348500162e-6, 1.9000646056e-7, -2.141328223e-8, 1.23906372e-9, 2.1848049e-10, -1.0134282e-10, 2.484728e-11, -4.73067e-12, 7.3555e-13, -8.740e-14, 4.85e-15, 1.23e-15, -5.6e-16, 1.4e-16, -3.e-17};static cheb_series fd_1_c_cs = { fd_1_c_data, 22, -1, 1, 13};/* Chebyshev fit for F_{1}(x) / x^2 * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 * x = 10(t+2) */static double fd_1_d_data[30] = { 1.0126626021151374442, -0.0063312525536433793, 0.0024837319237084326, -0.0008764333697726109, 0.0002913344438921266, -0.0000931877907705692, 0.0000290151342040275, -8.8548707259955e-6, 2.6603474114517e-6, -7.891415690452e-7, 2.315730237195e-7, -6.73179452963e-8, 1.94048035606e-8, -5.5507129189e-9, 1.5766090896e-9, -4.449310875e-10, 1.248292745e-10, -3.48392894e-11, 9.6791550e-12, -2.6786240e-12, 7.388852e-13, -2.032828e-13, 5.58115e-14, -1.52987e-14, 4.1886e-15, -1.1458e-15, 3.132e-16, -8.56e-17, 2.33e-17, -5.9e-18};static cheb_series fd_1_d_cs = { fd_1_d_data, 29, -1, 1, 14};/* Chebyshev fit for F_{1}(x) / x^2 * 30 < x < Inf * -1 < t < 1 * t = 60/x - 1 * x = 60/(t+1) */static double fd_1_e_data[10] = { 1.0013707783890401683, 0.0009138522593601060, 0.0002284630648400133, -1.57e-17, -1.27e-17, -9.7e-18, -6.9e-18, -4.6e-18, -2.9e-18, -1.7e-18};static cheb_series fd_1_e_cs = { fd_1_e_data, 9, -1, 1, 4};/* Chebyshev fit for F_{2}(t); -1 < t < 1, -1 < x < 1 */static double fd_2_a_data[21] = { 2.1573661917148458336, 0.8849670334241132182, 0.1784163467613519713, 0.0208333333333333333, 0.0012708226459768508, 0.0, -5.0619314244895e-6, 0.0, 4.32026533989e-8, 0.0, -4.870544166e-10, 0.0, 6.4203740e-12, 0.0, -9.37424e-14, 0.0, 1.4715e-15, 0.0, -2.44e-17, 0.0, 4.e-19};static cheb_series fd_2_a_cs = { fd_2_a_data, 20, -1, 1, 12};/* Chebyshev fit for F_{2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */static double fd_2_b_data[22] = { 16.508258811798623599, 7.421719394793067988, 1.458309885545603821, 0.128773850882795229, 0.001963612026198147, -0.000237458988738779, 0.000018539661382641, -1.92805649479e-7, -2.01950028452e-7, 3.2963497518e-8, -1.885817092e-9, -2.72632744e-10, 8.0554561e-11, -8.313223e-12, -2.24489e-13, 2.18778e-13, -3.4290e-14, 1.225e-15, 5.81e-16, -1.37e-16, 1.2e-17, 1.e-18};static cheb_series fd_2_b_cs = { fd_2_b_data, 21, -1, 1, 12};/* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */static double fd_2_c_data[20] = { 168.87129776686440711, 81.80260488091659458, 15.75408505947931513, 1.12325586765966440, 0.00059057505725084, -0.00016469712946921, 0.00003885607810107, -7.89873660613e-6, 1.39786238616e-6, -2.1534528656e-7, 2.831510953e-8, -2.94978583e-9, 1.6755082e-10, 2.234229e-11, -1.035130e-11, 2.41117e-12, -4.3531e-13, 6.447e-14, -7.39e-15, 4.3e-16};static cheb_series fd_2_c_cs = { fd_2_c_data, 19, -1, 1, 12};/* Chebyshev fit for F_{1}(x) / x^3 * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 * x = 10(t+2) */static double fd_2_d_data[30] = { 0.3459960518965277589, -0.00633136397691958024, 0.00248382959047594408, -0.00087651191884005114, 0.00029139255351719932, -0.00009322746111846199, 0.00002904021914564786, -8.86962264810663e-6, 2.66844972574613e-6, -7.9331564996004e-7, 2.3359868615516e-7, -6.824790880436e-8, 1.981036528154e-8, -5.71940426300e-9, 1.64379426579e-9, -4.7064937566e-10, 1.3432614122e-10, -3.823400534e-11, 1.085771994e-11, -3.07727465e-12, 8.7064848e-13, -2.4595431e-13, 6.938531e-14, -1.954939e-14, 5.50162e-15, -1.54657e-15, 4.3429e-16, -1.2178e-16, 3.394e-17, -8.81e-18};static cheb_series fd_2_d_cs = { fd_2_d_data, 29, -1, 1, 14};/* Chebyshev fit for F_{2}(x) / x^3 * 30 < x < Inf * -1 < t < 1 * t = 60/x - 1 * x = 60/(t+1) */static double fd_2_e_data[4] = { 0.3347041117223735227, 0.00091385225936012645, 0.00022846306484003205, 5.2e-19};static cheb_series fd_2_e_cs = { fd_2_e_data, 3, -1, 1, 3};/* Chebyshev fit for F_{-1/2}(t); -1 < t < 1, -1 < x < 1 */static double fd_mhalf_a_data[20] = { 1.2663290042859741974, 0.3697876251911153071, 0.0278131011214405055, -0.0033332848565672007, -0.0004438108265412038, 0.0000616495177243839, 8.7589611449897e-6, -1.2622936986172e-6, -1.837464037221e-7, 2.69495091400e-8, 3.9760866257e-9, -5.894468795e-10, -8.77321638e-11, 1.31016571e-11, 1.9621619e-12, -2.945887e-13, -4.43234e-14, 6.6816e-15, 1.0084e-15, -1.561e-16};static cheb_series fd_mhalf_a_cs = { fd_mhalf_a_data, 19, -1, 1, 12};/* Chebyshev fit for F_{-1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */static double fd_mhalf_b_data[20] = { 3.270796131942071484, 0.5809004935853417887, -0.0299313438794694987, -0.0013287935412612198, 0.0009910221228704198, -0.0001690954939688554, 6.5955849946915e-6, 3.5953966033618e-6, -9.430672023181e-7, 8.75773958291e-8, 1.06247652607e-8, -4.9587006215e-9, 7.160432795e-10, 4.5072219e-12, -2.3695425e-11, 4.9122208e-12, -2.905277e-13, -9.59291e-14, 3.00028e-14, -3.4970e-15};static cheb_series fd_mhalf_b_cs = { fd_mhalf_b_data, 19, -1, 1, 12};/* Chebyshev fit for F_{-1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */static double fd_mhalf_c_data[25] = { 5.828283273430595507, 0.677521118293264655, -0.043946248736481554, 0.005825595781828244, -0.000864858907380668, 0.000110017890076539, -6.973305225404e-6, -1.716267414672e-6, 8.59811582041e-7, -2.33066786976e-7, 4.8503191159e-8, -8.130620247e-9, 1.021068250e-9, -5.3188423e-11, -1.9430559e-11, 8.750506e-12, -2.324897e-12, 4.83102e-13, -8.1207e-14, 1.0132e-14, -4.64e-16, -2.24e-16, 9.7e-17, -2.6e-17, 5.e-18};static cheb_series fd_mhalf_c_cs = { fd_mhalf_c_data, 24, -1, 1, 13};/* Chebyshev fit for F_{-1/2}(x) / x^(1/2) * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 */static double fd_mhalf_d_data[30] = { 2.2530744202862438709, 0.0018745152720114692, -0.0007550198497498903, 0.0002759818676644382, -0.0000959406283465913, 0.0000324056855537065, -0.0000107462396145761, 3.5126865219224e-6, -1.1313072730092e-6, 3.577454162766e-7, -1.104926666238e-7, 3.31304165692e-8, -9.5837381008e-9, 2.6575790141e-9, -7.015201447e-10, 1.747111336e-10, -4.04909605e-11, 8.5104999e-12, -1.5261885e-12, 1.876851e-13, 1.00574e-14, -1.82002e-14, 8.6634e-15, -3.2058e-15, 1.0572e-15, -3.259e-16, 9.60e-17, -2.74e-17, 7.6e-18, -1.9e-18};static cheb_series fd_mhalf_d_cs = { fd_mhalf_d_data, 29, -1, 1, 15};/* Chebyshev fit for F_{1/2}(t); -1 < t < 1, -1 < x < 1 */static double fd_half_a_data[23] = { 1.7177138871306189157, 0.6192579515822668460, 0.0932802275119206269, 0.0047094853246636182, -0.0004243667967864481, -0.0000452569787686193, 5.2426509519168e-6, 6.387648249080e-7, -8.05777004848e-8, -1.04290272415e-8, 1.3769478010e-9, 1.847190359e-10, -2.51061890e-11, -3.4497818e-12, 4.784373e-13, 6.68828e-14, -9.4147e-15,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -