⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hermtd.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* linalg/hermtd.c *  * Copyright (C) 2001 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Factorise a hermitian matrix A into * * A = U T U' * * where U is unitary and T is real symmetric tridiagonal.  Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for Q can be obtained as the product * *       Q = Q_N ... Q_2 Q_1 * * where  * *       Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [0, ..., 0, 1, A(i+2,i), A(i+3,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK.  See LAPACK's * chetd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_linalg.h>int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau)  {  if (A->size1 != A->size2)    {      GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix",                 GSL_ENOTSQR);    }  else if (tau->size + 1 != A->size1)    {      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;        const gsl_complex zero = gsl_complex_rect (0.0, 0.0);      const gsl_complex one = gsl_complex_rect (1.0, 0.0);      const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0);      for (i = 0 ; i < N - 1; i++)        {          gsl_vector_complex_view c = gsl_matrix_complex_column (A, i);          gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1));          gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector);                    /* Apply the transformation H^T A H to the remaining columns */          if ((i + 1) < (N - 1)               && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0))             {              gsl_matrix_complex_view m =                 gsl_matrix_complex_submatrix (A, i + 1, i + 1,                                               N - (i+1), N - (i+1));              gsl_complex ei = gsl_vector_complex_get(&v.vector, 0);              gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1));              gsl_vector_complex_set (&v.vector, 0, one);                            /* x = tau * A * v */              gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector);              /* w = x - (1/2) tau * (x' * v) * v  */              {                gsl_complex xv, txv, alpha;                gsl_blas_zdotc(&x.vector, &v.vector, &xv);                txv = gsl_complex_mul(tau_i, xv);                alpha = gsl_complex_mul_real(txv, -0.5);                gsl_blas_zaxpy(alpha, &v.vector, &x.vector);              }                            /* apply the transformation A = A - v w' - w v' */              gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix);              gsl_vector_complex_set (&v.vector, 0, ei);            }                    gsl_vector_complex_set (tau, i, tau_i);        }            return GSL_SUCCESS;    }}  /*  Form the orthogonal matrix Q from the packed QR matrix */intgsl_linalg_hermtd_unpack (const gsl_matrix_complex * A,                           const gsl_vector_complex * tau,                          gsl_matrix_complex * Q,                           gsl_vector * diag,                           gsl_vector * sdiag){  if (A->size1 !=  A->size2)    {      GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);    }  else if (tau->size + 1 != A->size1)    {      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);    }  else if (Q->size1 != A->size1 || Q->size2 != A->size1)    {      GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN);    }  else if (diag->size != A->size1)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (sdiag->size + 1 != A->size1)    {      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;      /* Initialize Q to the identity */      gsl_matrix_complex_set_identity (Q);      for (i = N - 1; i > 0 && i--;)        {          gsl_complex ti = gsl_vector_complex_get (tau, i);          gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i);          gsl_vector_complex_const_view h =             gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1));          gsl_matrix_complex_view m =             gsl_matrix_complex_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1));          gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix);        }      /* Copy diagonal into diag */      for (i = 0; i < N; i++)        {          gsl_complex Aii = gsl_matrix_complex_get (A, i, i);          gsl_vector_set (diag, i, GSL_REAL(Aii));        }      /* Copy subdiagonal into sdiag */      for (i = 0; i < N - 1; i++)        {          gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);          gsl_vector_set (sdiag, i, GSL_REAL(Aji));        }      return GSL_SUCCESS;    }}intgsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A,                             gsl_vector * diag,                             gsl_vector * sdiag){  if (A->size1 !=  A->size2)    {      GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR);    }  else if (diag->size != A->size1)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (sdiag->size + 1 != A->size1)    {      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;      /* Copy diagonal into diag */      for (i = 0; i < N; i++)        {          gsl_complex Aii = gsl_matrix_complex_get (A, i, i);          gsl_vector_set (diag, i, GSL_REAL(Aii));        }      /* Copy subdiagonal into sd */      for (i = 0; i < N - 1; i++)        {          gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i);          gsl_vector_set (sdiag, i, GSL_REAL(Aji));        }      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -