📄 hermtd.c
字号:
/* linalg/hermtd.c * * Copyright (C) 2001 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Factorise a hermitian matrix A into * * A = U T U' * * where U is unitary and T is real symmetric tridiagonal. Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for Q can be obtained as the product * * Q = Q_N ... Q_2 Q_1 * * where * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, ..., 0, 1, A(i+2,i), A(i+3,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * chetd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_linalg.h>int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau) { if (A->size1 != A->size2) { GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; const gsl_complex zero = gsl_complex_rect (0.0, 0.0); const gsl_complex one = gsl_complex_rect (1.0, 0.0); const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0); for (i = 0 ; i < N - 1; i++) { gsl_vector_complex_view c = gsl_matrix_complex_column (A, i); gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1)); gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector); /* Apply the transformation H^T A H to the remaining columns */ if ((i + 1) < (N - 1) && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0)) { gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i + 1, i + 1, N - (i+1), N - (i+1)); gsl_complex ei = gsl_vector_complex_get(&v.vector, 0); gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1)); gsl_vector_complex_set (&v.vector, 0, one); /* x = tau * A * v */ gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector); /* w = x - (1/2) tau * (x' * v) * v */ { gsl_complex xv, txv, alpha; gsl_blas_zdotc(&x.vector, &v.vector, &xv); txv = gsl_complex_mul(tau_i, xv); alpha = gsl_complex_mul_real(txv, -0.5); gsl_blas_zaxpy(alpha, &v.vector, &x.vector); } /* apply the transformation A = A - v w' - w v' */ gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix); gsl_vector_complex_set (&v.vector, 0, ei); } gsl_vector_complex_set (tau, i, tau_i); } return GSL_SUCCESS; }} /* Form the orthogonal matrix Q from the packed QR matrix */intgsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, const gsl_vector_complex * tau, gsl_matrix_complex * Q, gsl_vector * diag, gsl_vector * sdiag){ if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else if (Q->size1 != A->size1 || Q->size2 != A->size1) { GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Initialize Q to the identity */ gsl_matrix_complex_set_identity (Q); for (i = N - 1; i > 0 && i--;) { gsl_complex ti = gsl_vector_complex_get (tau, i); gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i); gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1)); gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix); } /* Copy diagonal into diag */ for (i = 0; i < N; i++) { gsl_complex Aii = gsl_matrix_complex_get (A, i, i); gsl_vector_set (diag, i, GSL_REAL(Aii)); } /* Copy subdiagonal into sdiag */ for (i = 0; i < N - 1; i++) { gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i); gsl_vector_set (sdiag, i, GSL_REAL(Aji)); } return GSL_SUCCESS; }}intgsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A, gsl_vector * diag, gsl_vector * sdiag){ if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Copy diagonal into diag */ for (i = 0; i < N; i++) { gsl_complex Aii = gsl_matrix_complex_get (A, i, i); gsl_vector_set (diag, i, GSL_REAL(Aii)); } /* Copy subdiagonal into sd */ for (i = 0; i < N - 1; i++) { gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i); gsl_vector_set (sdiag, i, GSL_REAL(Aji)); } return GSL_SUCCESS; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -