📄 svd.c
字号:
/* linalg/svd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>#include "givens.c"#include "svdstep.c"/* Factorise a general M x N matrix A into, * * A = U D V^T * * where U is a column-orthogonal M x N matrix (U^T U = I), * D is a diagonal N x N matrix, * and V is an N x N orthogonal matrix (V^T V = V V^T = I) * * U is stored in the original matrix A, which has the same size * * V is stored as a separate matrix (not V^T). You must take the * transpose to form the product above. * * The diagonal matrix D is stored in the vector S, D_ii = S_i */intgsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, gsl_vector * work){ size_t a, b, i, j; const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN (M, N); if (M < N) { GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL); } else if (V->size1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } { gsl_vector_view f = gsl_vector_subvector (work, 0, K - 1); /* bidiagonalize matrix A, unpack A into U S V */ gsl_linalg_bidiag_decomp (A, S, &f.vector); gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V); /* apply reduction steps to B=(S,Sd) */ chop_small_elements (S, &f.vector); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (gsl_vector_get (&f.vector, b - 1) == 0.0) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (gsl_vector_get (&f.vector, a - 1) == 0.0) { break; } a--; } { const size_t n_block = b - a + 1; gsl_vector_view S_block = gsl_vector_subvector (S, a, n_block); gsl_vector_view f_block = gsl_vector_subvector (&f.vector, a, n_block - 1); gsl_matrix_view U_block = gsl_matrix_submatrix (A, 0, a, A->size1, n_block); gsl_matrix_view V_block = gsl_matrix_submatrix (V, 0, a, V->size1, n_block); qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, &V_block.matrix); /* remove any small off-diagonal elements */ chop_small_elements (&S_block.vector, &f_block.vector); } } } /* Make singular values positive by reflections if necessary */ for (j = 0; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj < 0.0) { for (i = 0; i < N; i++) { double Vij = gsl_matrix_get (V, i, j); gsl_matrix_set (V, i, j, -Vij); } gsl_vector_set (S, j, -Sj); } } /* Sort singular values into decreasing order */ for (i = 0; i < K; i++) { double S_max = gsl_vector_get (S, i); size_t i_max = i; for (j = i + 1; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj > S_max) { S_max = Sj; i_max = j; } } if (i_max != i) { /* swap eigenvalues */ gsl_vector_swap_elements (S, i, i_max); /* swap eigenvectors */ gsl_matrix_swap_columns (A, i, i_max); gsl_matrix_swap_columns (V, i, i_max); } } return GSL_SUCCESS;}/* Modified algorithm which is better for M>>N */intgsl_linalg_SV_decomp_mod (gsl_matrix * A, gsl_matrix * X, gsl_matrix * V, gsl_vector * S, gsl_vector * work){ size_t i, j; const size_t M = A->size1; const size_t N = A->size2; if (M < N) { GSL_ERROR ("svd of MxN matrix, M<N, is not implemented", GSL_EUNIMPL); } else if (V->size1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (X->size1 != N) { GSL_ERROR ("square matrix X must match second dimension of matrix A", GSL_EBADLEN); } else if (X->size1 != X->size2) { GSL_ERROR ("matrix X must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } /* Convert A into an upper triangular matrix R */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_column (A, i); gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1)); gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix); } gsl_vector_set (S, i, tau_i); } /* Copy the upper triangular part of A into X */ for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { gsl_matrix_set (X, i, j, 0.0); } { double Aii = gsl_matrix_get (A, i, i); gsl_matrix_set (X, i, i, Aii); } for (j = i + 1; j < N; j++) { double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (X, i, j, Aij); } } /* Convert A into an orthogonal matrix L */ for (j = N; j > 0 && j--;) { /* Householder column transformation to accumulate L */ double tj = gsl_vector_get (S, j); gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M - j, N - j); gsl_linalg_householder_hm1 (tj, &m.matrix); } /* unpack R into X V S */ gsl_linalg_SV_decomp (X, V, S, work); /* Multiply L by X, to obtain U = L X, stored in U */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -