⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exponential.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* linalg/exponential.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman *//* Calculate the matrix exponential, following * Moler + Van Loan, SIAM Rev. 20, 801 (1978). */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_mode.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_blas.h>#include "gsl_linalg.h"/* store one of the suggested choices for the * Taylor series / square  method from Moler + VanLoan */struct moler_vanloan_optimal_suggestion{  int k;  int j;};typedef  struct moler_vanloan_optimal_suggestion  mvl_suggestion_t;/* table from Moler and Van Loan * mvl_tab[gsl_mode_t][matrix_norm_group] */static mvl_suggestion_t mvl_tab[3][6] ={  /* double precision */  {    { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 }  },  /* single precision */  {    { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 }  },  /* approx precision */  {    { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 }  }};inlinestatic doublesup_norm(const gsl_matrix * A){  double min, max;  gsl_matrix_minmax(A, &min, &max);  return GSL_MAX_DBL(fabs(min), fabs(max));}staticmvl_suggestion_tobtain_suggestion(const gsl_matrix * A, gsl_mode_t mode){  const unsigned int mode_prec = GSL_MODE_PREC(mode);  const double norm_A = sup_norm(A);  if(norm_A < 0.01) return mvl_tab[mode_prec][0];  else if(norm_A < 0.1) return mvl_tab[mode_prec][1];  else if(norm_A < 1.0) return mvl_tab[mode_prec][2];  else if(norm_A < 10.0) return mvl_tab[mode_prec][3];  else if(norm_A < 100.0) return mvl_tab[mode_prec][4];  else if(norm_A < 1000.0) return mvl_tab[mode_prec][5];  else  {    /* outside the table we simply increase the number     * of squarings, bringing the reduced matrix into     * the range of the table; this is obviously suboptimal,     * but that is the price paid for not having those extra     * table entries     */    const double extra = log(1.01*norm_A/1000.0) / M_LN2;    const int extra_i = (unsigned int) ceil(extra);    mvl_suggestion_t s = mvl_tab[mode][5];    s.j += extra_i;    return s;  }}/* use series representation to calculate matrix exponential; * this is used for small matrices; we use the sup_norm * to measure the size of the terms in the expansion */static voidmatrix_exp_series(  const gsl_matrix * B,  gsl_matrix * eB,  int number_of_terms  ){  int count;  gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2);  /* init the Horner polynomial evaluation,   * eB = 1 + B/number_of_terms; we use   * eB to collect the partial results   */    gsl_matrix_memcpy(eB, B);  gsl_matrix_scale(eB, 1.0/number_of_terms);  gsl_matrix_add_diagonal(eB, 1.0);  for(count = number_of_terms-1; count >= 1; --count)  {    /*  mult_temp = 1 + B eB / count  */    gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp);    gsl_matrix_scale(temp, 1.0/count);    gsl_matrix_add_diagonal(temp, 1.0);    /*  transfer partial result out of temp */    gsl_matrix_memcpy(eB, temp);  }  /* now eB holds the full result; we're done */  gsl_matrix_free(temp);}intgsl_linalg_exponential_ss(  const gsl_matrix * A,  gsl_matrix * eA,  gsl_mode_t mode  ){  if(A->size1 != A->size2)  {    GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR);  }  else if(A->size1 != eA->size1 || A->size2 != eA->size2)  {    GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN);  }  else  {    int i;    const mvl_suggestion_t sugg = obtain_suggestion(A, mode);    const double divisor = exp(M_LN2 * sugg.j);    gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2);    /*  decrease A by the calculated divisor  */    gsl_matrix_memcpy(reduced_A, A);    gsl_matrix_scale(reduced_A, 1.0/divisor);    /*  calculate exp of reduced matrix; store in eA as temp  */    matrix_exp_series(reduced_A, eA, sugg.k);    /*  square repeatedly; use reduced_A for scratch */    for(i = 0; i < sugg.j; ++i)    {      gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A);      gsl_matrix_memcpy(eA, reduced_A);    }    gsl_matrix_free(reduced_A);    return GSL_SUCCESS;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -