⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symmtd.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* linalg/sytd.c *  * Copyright (C) 2001 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Factorise a symmetric matrix A into * * A = Q T Q' * * where Q is orthogonal and T is symmetric tridiagonal.  Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * Q is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for Q can be obtained as the product * *       Q = Q_1 Q_2 ... Q_(N-2) * * where  * *       Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [0, ... , 0, 1, A(i+1,i), A(i+2,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK.  See LAPACK's * ssytd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3  * * Note: this description uses 1-based indices. The code below uses * 0-based indices  */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>int gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * tau)  {  if (A->size1 != A->size2)    {      GSL_ERROR ("symmetric tridiagonal decomposition requires square matrix",                 GSL_ENOTSQR);    }  else if (tau->size + 1 != A->size1)    {      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;        for (i = 0 ; i < N - 2; i++)        {          gsl_vector_view c = gsl_matrix_column (A, i);          gsl_vector_view v = gsl_vector_subvector (&c.vector, i + 1, N - (i + 1));          double tau_i = gsl_linalg_householder_transform (&v.vector);                    /* Apply the transformation H^T A H to the remaining columns */          if (tau_i != 0.0)             {              gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i + 1,                                                         N - (i+1), N - (i+1));              double ei = gsl_vector_get(&v.vector, 0);              gsl_vector_view x = gsl_vector_subvector (tau, i, N-(i+1));              gsl_vector_set (&v.vector, 0, 1.0);                            /* x = tau * A * v */              gsl_blas_dsymv (CblasLower, tau_i, &m.matrix, &v.vector, 0.0, &x.vector);              /* w = x - (1/2) tau * (x' * v) * v  */              {                double xv, alpha;                gsl_blas_ddot(&x.vector, &v.vector, &xv);                alpha = - (tau_i / 2.0) * xv;                gsl_blas_daxpy(alpha, &v.vector, &x.vector);              }                            /* apply the transformation A = A - v w' - w v' */              gsl_blas_dsyr2(CblasLower, -1.0, &v.vector, &x.vector, &m.matrix);              gsl_vector_set (&v.vector, 0, ei);            }                    gsl_vector_set (tau, i, tau_i);        }            return GSL_SUCCESS;    }}  /*  Form the orthogonal matrix Q from the packed QR matrix */intgsl_linalg_symmtd_unpack (const gsl_matrix * A,                           const gsl_vector * tau,                          gsl_matrix * Q,                           gsl_vector * diag,                           gsl_vector * sdiag){  if (A->size1 !=  A->size2)    {      GSL_ERROR ("matrix A must be square", GSL_ENOTSQR);    }  else if (tau->size + 1 != A->size1)    {      GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN);    }  else if (Q->size1 != A->size1 || Q->size2 != A->size1)    {      GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN);    }  else if (diag->size != A->size1)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (sdiag->size + 1 != A->size1)    {      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;      /* Initialize Q to the identity */      gsl_matrix_set_identity (Q);      for (i = N - 2; i > 0 && i--;)        {          gsl_vector_const_view c = gsl_matrix_const_column (A, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, i + 1, N - (i+1));          double ti = gsl_vector_get (tau, i);          gsl_matrix_view m = gsl_matrix_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1));          gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);        }      /* Copy diagonal into diag */      for (i = 0; i < N; i++)        {          double Aii = gsl_matrix_get (A, i, i);          gsl_vector_set (diag, i, Aii);        }      /* Copy subdiagonal into sd */      for (i = 0; i < N - 1; i++)        {          double Aji = gsl_matrix_get (A, i+1, i);          gsl_vector_set (sdiag, i, Aji);        }      return GSL_SUCCESS;    }}intgsl_linalg_symmtd_unpack_T (const gsl_matrix * A,                             gsl_vector * diag,                             gsl_vector * sdiag){  if (A->size1 !=  A->size2)    {      GSL_ERROR ("matrix A must be square", GSL_ENOTSQR);    }  else if (diag->size != A->size1)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (sdiag->size + 1 != A->size1)    {      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i;      /* Copy diagonal into diag */      for (i = 0; i < N; i++)        {          double Aii = gsl_matrix_get (A, i, i);          gsl_vector_set (diag, i, Aii);        }      /* Copy subdiagonal into sdiag */      for (i = 0; i < N - 1; i++)        {          double Aij = gsl_matrix_get (A, i+1, i);          gsl_vector_set (sdiag, i, Aij);        }      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -