⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bidiag.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* linalg/bidiag.c *  * Copyright (C) 2001 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Factorise a matrix A into * * A = U B V^T * * where U and V are orthogonal and B is upper bidiagonal.  * * On exit, B is stored in the diagonal and first superdiagonal of A. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the diagonal. * * V is stored as a packed set of Householder transformations in the * upper triangular part of the input matrix above the first * superdiagonal. * * The full matrix for U can be obtained as the product * *       U = U_1 U_2 .. U_N * * where  * *       U_i = (I - tau_i * u_i * u_i') * * and where u_i is a Householder vector * *       u_i = [0, .. , 0, 1, A(i+1,i), A(i+3,i), .. , A(M,i)] * * The full matrix for V can be obtained as the product * *       V = V_1 V_2 .. V_(N-2) * * where  * *       V_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [0, .. , 0, 1, A(i,i+2), A(i,i+3), .. , A(i,N)] * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Algorithm 5.4.2  * * Note: this description uses 1-based indices. The code below uses * 0-based indices  */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>int gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V)  {  if (A->size1 < A->size2)    {      GSL_ERROR ("bidiagonal decomposition requires M>=N", GSL_EBADLEN);    }  else if (tau_U->size  != A->size2)    {      GSL_ERROR ("size of tau_U must be N", GSL_EBADLEN);    }  else if (tau_V->size + 1 != A->size2)    {      GSL_ERROR ("size of tau_V must be (N - 1)", GSL_EBADLEN);    }  else    {      const size_t M = A->size1;      const size_t N = A->size2;      size_t i;        for (i = 0 ; i < N; i++)        {          /* Apply Householder transformation to current column */                    {            gsl_vector_view c = gsl_matrix_column (A, i);            gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i);            double tau_i = gsl_linalg_householder_transform (&v.vector);                        /* Apply the transformation to the remaining columns */                        if (i + 1 < N)              {                gsl_matrix_view m =                   gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1));                gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix);              }            gsl_vector_set (tau_U, i, tau_i);                      }          /* Apply Householder transformation to current row */                    if (i + 1 < N)            {              gsl_vector_view r = gsl_matrix_row (A, i);              gsl_vector_view v = gsl_vector_subvector (&r.vector, i + 1, N - (i + 1));              double tau_i = gsl_linalg_householder_transform (&v.vector);                            /* Apply the transformation to the remaining rows */                            if (i + 1 < M)                {                  gsl_matrix_view m =                     gsl_matrix_submatrix (A, i+1, i+1, M - (i+1), N - (i+1));                  gsl_linalg_householder_mh (tau_i, &v.vector, &m.matrix);                }              gsl_vector_set (tau_V, i, tau_i);            }        }    }          return GSL_SUCCESS;}/* Form the orthogonal matrices U, V, diagonal d and superdiagonal sd   from the packed bidiagonal matrix A */intgsl_linalg_bidiag_unpack (const gsl_matrix * A,                           const gsl_vector * tau_U,                           gsl_matrix * U,                           const gsl_vector * tau_V,                          gsl_matrix * V,                          gsl_vector * diag,                           gsl_vector * superdiag){  const size_t M = A->size1;  const size_t N = A->size2;  const size_t K = GSL_MIN(M, N);  if (M < N)    {      GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN);    }  else if (tau_U->size != K)    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (tau_V->size + 1 != K)    {      GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN);    }  else if (U->size1 != M || U->size2 != N)    {      GSL_ERROR ("size of U must be M x N", GSL_EBADLEN);    }  else if (V->size1 != N || V->size2 != N)    {      GSL_ERROR ("size of V must be N x N", GSL_EBADLEN);    }  else if (diag->size != K)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (superdiag->size + 1 != K)    {      GSL_ERROR ("size of subdiagonal must be (diagonal size - 1)", GSL_EBADLEN);    }  else    {      size_t i, j;      /* Copy diagonal into diag */      for (i = 0; i < N; i++)        {          double Aii = gsl_matrix_get (A, i, i);          gsl_vector_set (diag, i, Aii);        }      /* Copy superdiagonal into superdiag */      for (i = 0; i < N - 1; i++)        {          double Aij = gsl_matrix_get (A, i, i+1);          gsl_vector_set (superdiag, i, Aij);        }      /* Initialize V to the identity */      gsl_matrix_set_identity (V);      for (i = N - 1; i > 0 && i--;)        {          /* Householder row transformation to accumulate V */          gsl_vector_const_view r = gsl_matrix_const_row (A, i);          gsl_vector_const_view h =             gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1));                    double ti = gsl_vector_get (tau_V, i);                    gsl_matrix_view m =             gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1));                    gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);        }      /* Initialize U to the identity */      gsl_matrix_set_identity (U);      for (j = N; j > 0 && j--;)        {          /* Householder column transformation to accumulate U */          gsl_vector_const_view c = gsl_matrix_const_column (A, j);          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, j, M - j);          double tj = gsl_vector_get (tau_U, j);                    gsl_matrix_view m =             gsl_matrix_submatrix (U, j, j, M-j, N-j);                    gsl_linalg_householder_hm (tj, &h.vector, &m.matrix);        }      return GSL_SUCCESS;    }}intgsl_linalg_bidiag_unpack2 (gsl_matrix * A,                            gsl_vector * tau_U,                            gsl_vector * tau_V,                           gsl_matrix * V){  const size_t M = A->size1;  const size_t N = A->size2;  const size_t K = GSL_MIN(M, N);  if (M < N)    {      GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN);    }  else if (tau_U->size != K)    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (tau_V->size + 1 != K)    {      GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN);    }  else if (V->size1 != N || V->size2 != N)    {      GSL_ERROR ("size of V must be N x N", GSL_EBADLEN);    }  else    {      size_t i, j;      /* Initialize V to the identity */      gsl_matrix_set_identity (V);      for (i = N - 1; i > 0 && i--;)        {          /* Householder row transformation to accumulate V */          gsl_vector_const_view r = gsl_matrix_const_row (A, i);          gsl_vector_const_view h =             gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1));                    double ti = gsl_vector_get (tau_V, i);                    gsl_matrix_view m =             gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1));                    gsl_linalg_householder_hm (ti, &h.vector, &m.matrix);        }      /* Copy superdiagonal into tau_v */      for (i = 0; i < N - 1; i++)        {          double Aij = gsl_matrix_get (A, i, i+1);          gsl_vector_set (tau_V, i, Aij);        }      /* Allow U to be unpacked into the same memory as A, copy         diagonal into tau_U */      for (j = N; j > 0 && j--;)        {          /* Householder column transformation to accumulate U */          double tj = gsl_vector_get (tau_U, j);          double Ajj = gsl_matrix_get (A, j, j);          gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M-j, N-j);          gsl_vector_set (tau_U, j, Ajj);          gsl_linalg_householder_hm1 (tj, &m.matrix);        }      return GSL_SUCCESS;    }}intgsl_linalg_bidiag_unpack_B (const gsl_matrix * A,                             gsl_vector * diag,                             gsl_vector * superdiag){  const size_t M = A->size1;  const size_t N = A->size2;  const size_t K = GSL_MIN(M, N);  if (diag->size != K)    {      GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN);    }  else if (superdiag->size + 1 != K)    {      GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN);    }  else    {      size_t i;      /* Copy diagonal into diag */      for (i = 0; i < K; i++)        {          double Aii = gsl_matrix_get (A, i, i);          gsl_vector_set (diag, i, Aii);        }      /* Copy superdiagonal into superdiag */      for (i = 0; i < K - 1; i++)        {          double Aij = gsl_matrix_get (A, i, i+1);          gsl_vector_set (superdiag, i, Aij);        }      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -