📄 householdercomplex.c
字号:
/* linalg/householdercomplex.c * * Copyright (C) 2001 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Computes a householder transformation matrix H such that * * H' v = -/+ |v| e_1 * * where e_1 is the first unit vector. On exit the matrix H can be * computed from the return values (tau, v) * * H = I - tau * w * w' * * where w = (1, v(2), ..., v(N)). The nonzero element of the result * vector -/+|v| e_1 is stored in v(1). * * Note that the matrix H' in the householder transformation is the * hermitian conjugate of H. To compute H'v, pass the conjugate of * tau as the first argument to gsl_linalg_householder_hm() rather * than tau itself. See the LAPACK function CLARFG for details of this * convention. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_linalg.h>gsl_complexgsl_linalg_complex_householder_transform (gsl_vector_complex * v){ /* replace v[0:n-1] with a householder vector (v[0:n-1]) and coefficient tau that annihilate v[1:n-1] */ const size_t n = v->size ; if (n == 1) { gsl_complex alpha = gsl_vector_complex_get (v, 0) ; double absa = gsl_complex_abs (alpha); double beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * absa ; gsl_complex tau; if (beta_r == 0.0) { GSL_REAL(tau) = 0.0; GSL_IMAG(tau) = 0.0; } else { GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ; GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ; { gsl_complex beta = gsl_complex_rect (beta_r, 0.0); gsl_vector_complex_set (v, 0, beta) ; } } return tau; } else { gsl_complex tau ; double beta_r; gsl_vector_complex_view x = gsl_vector_complex_subvector (v, 1, n - 1) ; gsl_complex alpha = gsl_vector_complex_get (v, 0) ; double absa = gsl_complex_abs (alpha); double xnorm = gsl_blas_dznrm2 (&x.vector); if (xnorm == 0 && GSL_IMAG(alpha) == 0) { gsl_complex zero = gsl_complex_rect(0.0, 0.0); return zero; /* tau = 0 */ } beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * hypot(absa, xnorm) ; GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ; GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ; { gsl_complex amb = gsl_complex_sub_real(alpha, beta_r); gsl_complex s = gsl_complex_inverse(amb); gsl_blas_zscal (s, &x.vector); } { gsl_complex beta = gsl_complex_rect (beta_r, 0.0); gsl_vector_complex_set (v, 0, beta) ; } return tau; }}intgsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A){ /* applies a householder transformation v,tau to matrix m */ size_t i, j; if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0) { return GSL_SUCCESS; } /* w = (v' A)^T */ for (j = 0; j < A->size2; j++) { gsl_complex tauwj; gsl_complex wj = gsl_matrix_complex_get(A,0,j); for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */ { gsl_complex Aij = gsl_matrix_complex_get(A,i,j); gsl_complex vi = gsl_vector_complex_get(v,i); gsl_complex Av = gsl_complex_mul (Aij, gsl_complex_conjugate(vi)); wj = gsl_complex_add (wj, Av); } tauwj = gsl_complex_mul (tau, wj); /* A = A - v w^T */ { gsl_complex A0j = gsl_matrix_complex_get (A, 0, j); gsl_complex Atw = gsl_complex_sub (A0j, tauwj); /* store A0j - tau * wj */ gsl_matrix_complex_set (A, 0, j, Atw); } for (i = 1; i < A->size1; i++) { gsl_complex vi = gsl_vector_complex_get (v, i); gsl_complex tauvw = gsl_complex_mul(vi, tauwj); gsl_complex Aij = gsl_matrix_complex_get (A, i, j); gsl_complex Atwv = gsl_complex_sub (Aij, tauvw); /* store Aij - tau * vi * wj */ gsl_matrix_complex_set (A, i, j, Atwv); } } return GSL_SUCCESS;}intgsl_linalg_complex_householder_hv (gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex * w){ const size_t N = v->size; if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0) return GSL_SUCCESS; { /* compute z = v'w */ gsl_complex z0 = gsl_vector_complex_get(w,0); gsl_complex z1, z; gsl_complex tz, ntz; gsl_vector_complex_const_view v1 = gsl_vector_complex_const_subvector(v, 1, N-1); gsl_vector_complex_view w1 = gsl_vector_complex_subvector(w, 1, N-1); gsl_blas_zdotc(&v1.vector, &w1.vector, &z1); z = gsl_complex_add (z0, z1); tz = gsl_complex_mul(tau, z); ntz = gsl_complex_negative (tz); /* compute w = w - tau * (v'w) * v */ { gsl_complex w0 = gsl_vector_complex_get(w, 0); gsl_complex w0ntz = gsl_complex_add (w0, ntz); gsl_vector_complex_set (w, 0, w0ntz); } gsl_blas_zaxpy(ntz, &v1.vector, &w1.vector); } return GSL_SUCCESS;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -