⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 luc.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* linalg/luc.c *  * Copyright (C) 2001 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_complex.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_permute_vector.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_linalg.h>/* Factorise a general N x N complex matrix A into, * *   P A = L U * * where P is a permutation matrix, L is unit lower triangular and U * is upper triangular. * * L is stored in the strict lower triangular part of the input * matrix. The diagonal elements of L are unity and are not stored. * * U is stored in the diagonal and upper triangular part of the * input matrix.   *  * P is stored in the permutation p. Column j of P is column k of the * identity matrix, where k = permutation->data[j] * * signum gives the sign of the permutation, (-1)^n, where n is the * number of interchanges in the permutation.  * * See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss * Elimination with Partial Pivoting). */intgsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * p, int *signum){  if (A->size1 != A->size2)    {      GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR);    }  else if (p->size != A->size1)    {      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      size_t i, j, k;      *signum = 1;      gsl_permutation_init (p);      for (j = 0; j < N - 1; j++)        {          /* Find maximum in the j-th column */          gsl_complex ajj = gsl_matrix_complex_get (A, j, j);          double max = gsl_complex_abs (ajj);          size_t i_pivot = j;          for (i = j + 1; i < N; i++)            {              gsl_complex aij = gsl_matrix_complex_get (A, i, j);              double ai = gsl_complex_abs (aij);              if (ai > max)                {                  max = ai;                  i_pivot = i;                }            }          if (i_pivot != j)            {              gsl_matrix_complex_swap_rows (A, j, i_pivot);              gsl_permutation_swap (p, j, i_pivot);              *signum = -(*signum);            }          ajj = gsl_matrix_complex_get (A, j, j);          if (!(GSL_REAL(ajj) == 0.0 && GSL_IMAG(ajj) == 0.0))            {              for (i = j + 1; i < N; i++)                {                  gsl_complex aij_orig = gsl_matrix_complex_get (A, i, j);                  gsl_complex aij = gsl_complex_div (aij_orig, ajj);                  gsl_matrix_complex_set (A, i, j, aij);                  for (k = j + 1; k < N; k++)                    {                      gsl_complex aik = gsl_matrix_complex_get (A, i, k);                      gsl_complex ajk = gsl_matrix_complex_get (A, j, k);                                            /* aik = aik - aij * ajk */                      gsl_complex aijajk = gsl_complex_mul (aij, ajk);                      gsl_complex aik_new = gsl_complex_sub (aik, aijajk);                      gsl_matrix_complex_set (A, i, k, aik_new);                    }                }            }        }            return GSL_SUCCESS;    }}intgsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x){  if (LU->size1 != LU->size2)    {      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);    }  else if (LU->size1 != p->size)    {      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);    }  else if (LU->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (LU->size2 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_complex_memcpy (x, b);      /* Solve for x */      gsl_linalg_complex_LU_svx (LU, p, x);      return GSL_SUCCESS;    }}intgsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_vector_complex * x){  if (LU->size1 != LU->size2)    {      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);    }  else if (LU->size1 != p->size)    {      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);    }  else if (LU->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN);    }  else    {      /* Apply permutation to RHS */      gsl_permute_vector_complex (p, x);      /* Solve for c using forward-substitution, L c = P b */      gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x);      /* Perform back-substitution, U x = c */      gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x);      return GSL_SUCCESS;    }}intgsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * residual){  if (A->size1 != A->size2)    {      GSL_ERROR ("matrix a must be square", GSL_ENOTSQR);    }  if (LU->size1 != LU->size2)    {      GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);    }  else if (A->size1 != LU->size2)    {      GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR);    }  else if (LU->size1 != p->size)    {      GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);    }  else if (LU->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (LU->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Compute residual, residual = (A * x  - b) */      gsl_vector_complex_memcpy (residual, b);      {        gsl_complex one = GSL_COMPLEX_ONE;        gsl_complex negone = GSL_COMPLEX_NEGONE;        gsl_blas_zgemv (CblasNoTrans, one, A, x, negone, residual);      }      /* Find correction, delta = - (A^-1) * residual, and apply it */      gsl_linalg_complex_LU_svx (LU, p, residual);      {        gsl_complex negone= GSL_COMPLEX_NEGONE;        gsl_blas_zaxpy (negone, residual, x);      }      return GSL_SUCCESS;    }}intgsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_matrix_complex * inverse){  size_t i, n = LU->size1;  int status = GSL_SUCCESS;  gsl_matrix_complex_set_identity (inverse);  for (i = 0; i < n; i++)    {      gsl_vector_complex_view c = gsl_matrix_complex_column (inverse, i);      int status_i = gsl_linalg_complex_LU_svx (LU, p, &(c.vector));      if (status_i)        status = status_i;    }  return status;}gsl_complexgsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int signum){  size_t i, n = LU->size1;  gsl_complex det = gsl_complex_rect((double) signum, 0.0);  for (i = 0; i < n; i++)    {      gsl_complex zi = gsl_matrix_complex_get (LU, i, i);      det = gsl_complex_mul (det, zi);    }  return det;}doublegsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU){  size_t i, n = LU->size1;  double lndet = 0.0;  for (i = 0; i < n; i++)    {      gsl_complex z = gsl_matrix_complex_get (LU, i, i);      lndet += log (gsl_complex_abs (z));    }  return lndet;}gsl_complexgsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int signum){  size_t i, n = LU->size1;  gsl_complex phase = gsl_complex_rect((double) signum, 0.0);  for (i = 0; i < n; i++)    {      gsl_complex z = gsl_matrix_complex_get (LU, i, i);            double r = gsl_complex_abs(z);      if (r == 0)        {          phase = gsl_complex_rect(0.0, 0.0);          break;        }      else        {          z = gsl_complex_div_real(z, r);          phase = gsl_complex_mul(phase, z);        }    }  return phase;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -