⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hermv.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* eigen/hermv.c *  * Copyright (C) 2001 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_complex_math.h>#include <gsl/gsl_linalg.h>#include <gsl/gsl_eigen.h>/* Compute eigenvalues/eigenvectors of complex hermitian matrix using   reduction to real symmetric tridiagonal form, followed by QR   iteration with implicit shifts.   See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */#include "qrstep.c"gsl_eigen_hermv_workspace * gsl_eigen_hermv_alloc (const size_t n){  gsl_eigen_hermv_workspace * w ;  if (n == 0)    {      GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL);    }    w = (gsl_eigen_hermv_workspace *) malloc (sizeof(gsl_eigen_hermv_workspace));  if (w == 0)    {      GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM);    }  w->d = (double *) malloc (n * sizeof (double));  if (w->d == 0)    {      free (w);      GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM);    }  w->sd = (double *) malloc (n * sizeof (double));  if (w->sd == 0)    {      free (w->d);      free (w);      GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM);    }  w->tau = (double *) malloc (2 * n * sizeof (double));  if (w->tau == 0)    {      free (w->sd);      free (w->d);      free (w);      GSL_ERROR_NULL ("failed to allocate space for tau", GSL_ENOMEM);    }  w->gc = (double *) malloc (n * sizeof (double));  if (w->gc == 0)    {      free (w->tau);      free (w->sd);      free (w->d);      free (w);      GSL_ERROR_NULL ("failed to allocate space for cosines", GSL_ENOMEM);    }  w->gs = (double *) malloc (n * sizeof (double));  if (w->gs == 0)    {      free (w->gc);      free (w->tau);      free (w->sd);      free (w->d);      free (w);      GSL_ERROR_NULL ("failed to allocate space for sines", GSL_ENOMEM);    }  w->size = n;  return w;}voidgsl_eigen_hermv_free (gsl_eigen_hermv_workspace * w){  free (w->gs);  free (w->gc);  free (w->tau);  free (w->sd);  free (w->d);  free (w);}intgsl_eigen_hermv (gsl_matrix_complex * A, gsl_vector * eval,                        gsl_matrix_complex * evec,                       gsl_eigen_hermv_workspace * w){  if (A->size1 != A->size2)    {      GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR);    }  else if (eval->size != A->size1)    {      GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN);    }  else if (evec->size1 != A->size1 || evec->size2 != A->size1)    {      GSL_ERROR ("eigenvector matrix must match matrix size", GSL_EBADLEN);    }  else    {      const size_t N = A->size1;      double *const d = w->d;      double *const sd = w->sd;      size_t a, b;      /* handle special case */      if (N == 1)        {          gsl_complex A00 = gsl_matrix_complex_get (A, 0, 0);          gsl_vector_set (eval, 0, GSL_REAL(A00));          gsl_matrix_complex_set (evec, 0, 0, GSL_COMPLEX_ONE);          return GSL_SUCCESS;        }      /* Transform the matrix into a symmetric tridiagonal form */      {        gsl_vector_view d_vec = gsl_vector_view_array (d, N);        gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1);        gsl_vector_complex_view tau_vec = gsl_vector_complex_view_array (w->tau, N-1);        gsl_linalg_hermtd_decomp (A, &tau_vec.vector);        gsl_linalg_hermtd_unpack (A, &tau_vec.vector, evec, &d_vec.vector, &sd_vec.vector);      }      /* Make an initial pass through the tridiagonal decomposition         to remove off-diagonal elements which are effectively zero */            chop_small_elements (N, d, sd);            /* Progressively reduce the matrix until it is diagonal */            b = N - 1;            while (b > 0)        {          if (sd[b - 1] == 0.0 || isnan(sd[b - 1]))            {              b--;              continue;            }                    /* Find the largest unreduced block (a,b) starting from b             and working backwards */                    a = b - 1;                    while (a > 0)            {              if (sd[a - 1] == 0.0)                {                  break;                }              a--;            }                    {            size_t i;            const size_t n_block = b - a + 1;            double *d_block = d + a;            double *sd_block = sd + a;            double * const gc = w->gc;            double * const gs = w->gs;                        /* apply QR reduction with implicit deflation to the               unreduced block */                        qrstep (n_block, d_block, sd_block, gc, gs);                        /* Apply  Givens rotation Gij(c,s) to matrix Q,  Q <- Q G */                        for (i = 0; i < n_block - 1; i++)              {                const double c = gc[i], s = gs[i];                size_t k;                                for (k = 0; k < N; k++)                  {                    gsl_complex qki = gsl_matrix_complex_get (evec, k, a + i);                    gsl_complex qkj = gsl_matrix_complex_get (evec, k, a + i + 1);                    /* qki <= qki * c - qkj * s */                    /* qkj <= qki * s + qkj * c */                    gsl_complex x1 = gsl_complex_mul_real(qki, c);                    gsl_complex y1 = gsl_complex_mul_real(qkj, -s);                                        gsl_complex x2 = gsl_complex_mul_real(qki, s);                    gsl_complex y2 = gsl_complex_mul_real(qkj, c);                                        gsl_complex qqki = gsl_complex_add(x1, y1);                    gsl_complex qqkj = gsl_complex_add(x2, y2);                                        gsl_matrix_complex_set (evec, k, a + i, qqki);                    gsl_matrix_complex_set (evec, k, a + i + 1, qqkj);                  }              }                        /* remove any small off-diagonal elements */                        chop_small_elements (n_block, d_block, sd_block);          }        }            {        gsl_vector_view d_vec = gsl_vector_view_array (d, N);        gsl_vector_memcpy (eval, &d_vec.vector);      }            return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -