⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
📖 第 1 页 / 共 2 页
字号:
/* poly/test.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_test.h>#include <gsl/gsl_ieee_utils.h>#include <gsl/gsl_poly.h>intmain (void){  const double eps = 100.0 * GSL_DBL_EPSILON;  gsl_ieee_env_setup ();  {    double x, y;    double c[3] = { 1.0, 0.5, 0.3 };    x = 0.5;    y = gsl_poly_eval (c, 3, x);    gsl_test_rel (y, 1 + 0.5 * x + 0.3 * x * x, eps,                  "gsl_poly_eval({1, 0.5, 0.3}, 0.5)");  }  {    double x, y;    double d[11] = { 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1 };    x = 1.0;    y = gsl_poly_eval (d, 11, x);    gsl_test_rel (y, 1.0, eps,                  "gsl_poly_eval({1,-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, 1.0)");  }  /* Quadratic */  {    double x0, x1;    int n = gsl_poly_solve_quadratic (4.0, -20.0, 26.0, &x0, &x1);    gsl_test (n != 0, "gsl_poly_solve_quadratic, no roots, (2x - 5)^2 = -1");  }  {    double x0, x1;    int n = gsl_poly_solve_quadratic (4.0, -20.0, 25.0, &x0, &x1);    gsl_test (n != 2, "gsl_poly_solve_quadratic, one root, (2x - 5)^2 = 0");    gsl_test_rel (x0, 2.5, 1e-9, "x0, (2x - 5)^2 = 0");    gsl_test_rel (x1, 2.5, 1e-9, "x1, (2x - 5)^2 = 0");    gsl_test (x0 != x1, "x0 == x1, (2x - 5)^2 = 0");  }  {    double x0, x1;    int n = gsl_poly_solve_quadratic (4.0, -20.0, 21.0, &x0, &x1);    gsl_test (n != 2, "gsl_poly_solve_quadratic, two roots, (2x - 5)^2 = 4");    gsl_test_rel (x0, 1.5, 1e-9, "x0, (2x - 5)^2 = 4");    gsl_test_rel (x1, 3.5, 1e-9, "x1, (2x - 5)^2 = 4");  }  {    double x0, x1;    int n = gsl_poly_solve_quadratic (4.0, 7.0, 0.0, &x0, &x1);    gsl_test (n != 2, "gsl_poly_solve_quadratic, two roots, x(4x + 7) = 0");    gsl_test_rel (x0, -1.75, 1e-9, "x0, x(4x + 7) = 0");    gsl_test_rel (x1, 0.0, 1e-9, "x1, x(4x + 7) = 0");  }  {    double x0, x1;    int n = gsl_poly_solve_quadratic (5.0, 0.0, -20.0, &x0, &x1);    gsl_test (n != 2,              "gsl_poly_solve_quadratic, two roots b = 0, 5 x^2 = 20");    gsl_test_rel (x0, -2.0, 1e-9, "x0, 5 x^2 = 20");    gsl_test_rel (x1, 2.0, 1e-9, "x1, 5 x^2 = 20");  }  /* Cubic */  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (0.0, 0.0, -27.0, &x0, &x1, &x2);    gsl_test (n != 1, "gsl_poly_solve_cubic, one root, x^3 = 27");    gsl_test_rel (x0, 3.0, 1e-9, "x0, x^3 = 27");  }  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (-51.0, 867.0, -4913.0, &x0, &x1, &x2);    gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x-17)^3=0");    gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)^3=0");    gsl_test_rel (x1, 17.0, 1e-9, "x1, (x-17)^3=0");    gsl_test_rel (x2, 17.0, 1e-9, "x2, (x-17)^3=0");  }  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (-57.0, 1071.0, -6647.0, &x0, &x1, &x2);    gsl_test (n != 3,              "gsl_poly_solve_cubic, three roots, (x-17)(x-17)(x-23)=0");    gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)(x-17)(x-23)=0");    gsl_test_rel (x1, 17.0, 1e-9, "x1, (x-17)(x-17)(x-23)=0");    gsl_test_rel (x2, 23.0, 1e-9, "x2, (x-17)(x-17)(x-23)=0");  }  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (-11.0, -493.0, +6647.0, &x0, &x1, &x2);    gsl_test (n != 3,              "gsl_poly_solve_cubic, three roots, (x+23)(x-17)(x-17)=0");    gsl_test_rel (x0, -23.0, 1e-9, "x0, (x+23)(x-17)(x-17)=0");    gsl_test_rel (x1, 17.0, 1e-9, "x1, (x+23)(x-17)(x-17)=0");    gsl_test_rel (x2, 17.0, 1e-9, "x2, (x+23)(x-17)(x-17)=0");  }  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (-143.0, 5087.0, -50065.0, &x0, &x1, &x2);    gsl_test (n != 3,              "gsl_poly_solve_cubic, three roots, (x-17)(x-31)(x-95)=0");    gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)(x-31)(x-95)=0");    gsl_test_rel (x1, 31.0, 1e-9, "x1, (x-17)(x-31)(x-95)=0");    gsl_test_rel (x2, 95.0, 1e-9, "x2, (x-17)(x-31)(x-95)=0");  }  {    double x0, x1, x2;    int n = gsl_poly_solve_cubic (-109.0, 803.0, 50065.0, &x0, &x1, &x2);    gsl_test (n != 3,              "gsl_poly_solve_cubic, three roots, (x+17)(x-31)(x-95)=0");    gsl_test_rel (x0, -17.0, 1e-9, "x0, (x+17)(x-31)(x-95)=0");    gsl_test_rel (x1, 31.0, 1e-9, "x1, (x+17)(x-31)(x-95)=0");    gsl_test_rel (x2, 95.0, 1e-9, "x2, (x+17)(x-31)(x-95)=0");  }  /* Quadratic with complex roots */  {    gsl_complex z0, z1;    int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 26.0, &z0, &z1);    gsl_test (n != 2,              "gsl_poly_complex_solve_quadratic, 2 roots (2x - 5)^2 = -1");    gsl_test_rel (GSL_REAL (z0), 2.5, 1e-9, "z0.real, (2x - 5)^2 = -1");    gsl_test_rel (GSL_IMAG (z0), -0.5, 1e-9, "z0.imag, (2x - 5)^2 = -1");    gsl_test_rel (GSL_REAL (z1), 2.5, 1e-9, "z1.real, (2x - 5)^2 = -1");    gsl_test_rel (GSL_IMAG (z1), 0.5, 1e-9, "z1.imag, (2x - 5)^2 = -1");  }  {    gsl_complex z0, z1;    int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 25.0, &z0, &z1);    gsl_test (n != 2,              "gsl_poly_complex_solve_quadratic, one root, (2x - 5)^2 = 0");    gsl_test_rel (GSL_REAL (z0), 2.5, 1e-9, "z0.real, (2x - 5)^2 = 0");    gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag (2x - 5)^2 = 0");    gsl_test_rel (GSL_REAL (z1), 2.5, 1e-9, "z1.real, (2x - 5)^2 = 0");    gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag (2x - 5)^2 = 0");    gsl_test (GSL_REAL (z0) != GSL_REAL (z1),              "z0.real == z1.real, (2x - 5)^2 = 0");    gsl_test (GSL_IMAG (z0) != GSL_IMAG (z1),              "z0.imag == z1.imag, (2x - 5)^2 = 0");  }  {    gsl_complex z0, z1;    int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 21.0, &z0, &z1);    gsl_test (n != 2,              "gsl_poly_complex_solve_quadratic, two roots, (2x - 5)^2 = 4");    gsl_test_rel (GSL_REAL (z0), 1.5, 1e-9, "z0.real, (2x - 5)^2 = 4");    gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (2x - 5)^2 = 4");    gsl_test_rel (GSL_REAL (z1), 3.5, 1e-9, "z1.real, (2x - 5)^2 = 4");    gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (2x - 5)^2 = 4");  }  {    gsl_complex z0, z1;    int n = gsl_poly_complex_solve_quadratic (4.0, 7.0, 0.0, &z0, &z1);    gsl_test (n != 2,              "gsl_poly_complex_solve_quadratic, two roots, x(4x + 7) = 0");    gsl_test_rel (GSL_REAL (z0), -1.75, 1e-9, "z0.real, x(4x + 7) = 0");    gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, x(4x + 7) = 0");    gsl_test_rel (GSL_REAL (z1), 0.0, 1e-9, "z1.real, x(4x + 7) = 0");    gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, x(4x + 7) = 0");  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -