⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gsl_poly.h

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 H
字号:
/* poly/gsl_poly.h *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#ifndef __GSL_POLY_H__#define __GSL_POLY_H__#include <stdlib.h>#include <gsl/gsl_complex.h>#undef __BEGIN_DECLS#undef __END_DECLS#ifdef __cplusplus# define __BEGIN_DECLS extern "C" {# define __END_DECLS }#else# define __BEGIN_DECLS /* empty */# define __END_DECLS /* empty */#endif__BEGIN_DECLS/* Evaluate polynomial * * c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^(len-1) * * exceptions: none */double gsl_poly_eval(const double c[], const int len, const double x);#if HAVE_INLINEextern inlinedouble gsl_poly_eval(const double c[], const int len, const double x){  int i;  double ans = c[len-1];  for(i=len-1; i>0; i--) ans = c[i-1] + x * ans;  return ans;}#endif /* HAVE_INLINE *//* Work with divided-difference polynomials, Abramowitz & Stegun 25.2.26 */intgsl_poly_dd_init (double dd[], const double x[], const double y[],                  size_t size);doublegsl_poly_dd_eval (const double dd[], const double xa[], const size_t size, const double x);#if HAVE_INLINEextern inlinedouble gsl_poly_dd_eval(const double dd[], const double xa[], const size_t size, const double x){  size_t i;  double y = dd[size - 1];  for (i = size - 1; i--;) y = dd[i] + (x - xa[i]) * y;  return y;}#endif /* HAVE_INLINE */intgsl_poly_dd_taylor (double c[], double xp,                    const double dd[], const double x[], size_t size,                    double w[]);/* Solve for real or complex roots of the standard quadratic equation, * returning the number of real roots. * * Roots are returned ordered. */int gsl_poly_solve_quadratic (double a, double b, double c,                               double * x0, double * x1);int gsl_poly_complex_solve_quadratic (double a, double b, double c,                                   gsl_complex * z0, gsl_complex * z1);/* Solve for real roots of the cubic equation * x^3 + a x^2 + b x + c = 0, returning the * number of real roots. * * Roots are returned ordered. */int gsl_poly_solve_cubic (double a, double b, double c,                           double * x0, double * x1, double * x2);int gsl_poly_complex_solve_cubic (double a, double b, double c,                               gsl_complex * z0, gsl_complex * z1,                               gsl_complex * z2);/* Solve for the complex roots of a general real polynomial */typedef struct {   size_t nc ;  double * matrix ; } gsl_poly_complex_workspace ;gsl_poly_complex_workspace * gsl_poly_complex_workspace_alloc (size_t n);void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * w);intgsl_poly_complex_solve (const double * a, size_t n,                         gsl_poly_complex_workspace * w,                        gsl_complex_packed_ptr z);__END_DECLS#endif /* __GSL_POLY_H__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -