⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* dht/test_dht.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* Author:  G. Jungman */#include <config.h>#include <stdlib.h>#include <stdio.h>#include <math.h>#include <gsl/gsl_ieee_utils.h>#include <gsl/gsl_test.h>#include <gsl/gsl_dht.h>/* Test exact small transform. */inttest_dht_exact(void){  int stat = 0;  double f_in[3] = { 1.0, 2.0, 3.0 };  double f_out[3];  gsl_dht * t = gsl_dht_new(3, 1.0, 1.0);  gsl_dht_apply(t, f_in, f_out);  /* Check values. */  if(fabs( f_out[0]-( 0.375254649407520))/0.375254649407520 > 1.0e-14) stat++;  if(fabs( f_out[1]-(-0.133507872695560))/0.133507872695560 > 1.0e-14) stat++;  if(fabs( f_out[2]-( 0.044679925143840))/0.044679925143840 > 1.0e-14) stat++;  /* Check inverse.   * We have to adjust the normalization   * so we can use the same precalculated transform.   */  gsl_dht_apply(t, f_out, f_in);  f_in[0] *= 13.323691936314223*13.323691936314223;  /* jzero[1,4]^2 */  f_in[1] *= 13.323691936314223*13.323691936314223;  f_in[2] *= 13.323691936314223*13.323691936314223;  /* The loss of precision on the inverse   * is a little surprising. However, this   * thing is quite tricky since the band-limited   * function represented by the samples {1,2,3}   * need not be very nice. Like in any spectral   * application, you really have to have some   * a-priori knowledge of the underlying function.   */  if(fabs( f_in[0]-1.0)/1.0 > 2.0e-05) stat++;  if(fabs( f_in[1]-2.0)/2.0 > 2.0e-05) stat++;  if(fabs( f_in[2]-3.0)/3.0 > 2.0e-05) stat++;  gsl_dht_free(t);  return stat;}/* Test the transform * Integrate[x J_0(a x) / (x^2 + 1), {x,0,Inf}] = K_0(a) */inttest_dht_simple(void){  int stat = 0;  int n;  double f_in[128];  double f_out[128];  gsl_dht * t = gsl_dht_new(128, 0.0, 100.0);  for(n=0; n<128; n++) {    const double x = gsl_dht_x_sample(t, n);    f_in[n] = 1.0/(1.0+x*x);  }  gsl_dht_apply(t, f_in, f_out);  /* This is a difficult transform to calculate this way,   * since it does not satisfy the boundary condition and   * it dies quite slowly. So it is not meaningful to   * compare this to high accuracy. We only check   * that it seems to be working.   */  if(fabs( f_out[0]-4.00)/4.00 > 0.02) stat++;  if(fabs( f_out[5]-1.84)/1.84 > 0.02) stat++;  if(fabs(f_out[10]-1.27)/1.27 > 0.02) stat++;  if(fabs(f_out[35]-0.352)/0.352 > 0.02) stat++;  if(fabs(f_out[100]-0.0237)/0.0237 > 0.02) stat++;  gsl_dht_free(t);  return stat;}/* Test the transform * Integrate[ x exp(-x) J_1(a x), {x,0,Inf}] = a F(3/2, 2; 2; -a^2) */inttest_dht_exp1(void){  int stat = 0;  int n;  double f_in[128];  double f_out[128];  gsl_dht * t = gsl_dht_new(128, 1.0, 20.0);  for(n=0; n<128; n++) {    const double x = gsl_dht_x_sample(t, n);    f_in[n] = exp(-x);  }  gsl_dht_apply(t, f_in, f_out);  /* Spot check.   * Note that the systematic errors in the calculation   * are quite large, so it is meaningless to compare   * to a high accuracy.   */  if(fabs( f_out[0]-0.181)/0.181 > 0.02) stat++;  if(fabs( f_out[5]-0.357)/0.357 > 0.02) stat++;  if(fabs(f_out[10]-0.211)/0.211 > 0.02) stat++;  if(fabs(f_out[35]-0.0289)/0.0289 > 0.02) stat++;  if(fabs(f_out[100]-0.00221)/0.00211 > 0.02) stat++;  gsl_dht_free(t);  return stat;}/* Test the transform * Integrate[ x^2 (1-x^2) J_1(a x), {x,0,1}] = 2/a^2 J_3(a) */inttest_dht_poly1(void){  int stat = 0;  int n;  double f_in[128];  double f_out[128];  gsl_dht * t = gsl_dht_new(128, 1.0, 1.0);  for(n=0; n<128; n++) {    const double x = gsl_dht_x_sample(t, n);    f_in[n] = x * (1.0 - x*x);  }  gsl_dht_apply(t, f_in, f_out);  /* Spot check. This function satisfies the boundary condition,   * so the accuracy should be ok.   */  if(fabs( f_out[0]-0.057274214)/0.057274214    > 1.0e-07) stat++;  if(fabs( f_out[5]-(-0.000190850))/0.000190850 > 1.0e-05) stat++;  if(fabs(f_out[10]-0.000024342)/0.000024342    > 1.0e-04) stat++;  if(fabs(f_out[35]-(-4.04e-07))/4.04e-07       > 1.0e-03) stat++;  if(fabs(f_out[100]-1.0e-08)/1.0e-08           > 0.25)    stat++;  gsl_dht_free(t);  return stat;}int main(){  gsl_ieee_env_setup ();  gsl_test( test_dht_exact(),   "Small Exact DHT");  gsl_test( test_dht_simple(),  "Simple  DHT");  gsl_test( test_dht_exp1(),    "Exp  J1 DHT");  gsl_test( test_dht_poly1(),   "Poly J1 DHT");  exit (gsl_test_summary());}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -