⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gammainv.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* cdf/gammainv.c *  * Copyright (C) 2003 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_cdf.h>#include <gsl/gsl_math.h>#include <gsl/gsl_randist.h>#include <gsl/gsl_sf_gamma.h>#include <stdio.h>doublegsl_cdf_gamma_Pinv (const double P, const double a, const double b){  double x;  if (P == 1.0)    {      return GSL_POSINF;    }  else if (P == 0.0)    {      return 0.0;    }  /* Consider, small, large and intermediate cases separately.  The     boundaries at 0.05 and 0.95 have not been optimised, but seem ok     for an initial approximation. */  if (P < 0.05)    {      double x0 = exp ((gsl_sf_lngamma (a) + log (P)) / a);      x = x0;    }  else if (P > 0.95)    {      double x0 = -log1p (-P) + gsl_sf_lngamma (a);      x = x0;    }  else    {      double xg = gsl_cdf_ugaussian_Pinv (P);      double x0 = (xg < -sqrt (a)) ? a : sqrt (a) * xg + a;      x = x0;    }  /* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards     to an improved value of x (Abramowitz & Stegun, 3.6.6)      where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.   */  {    double lambda, dP, phi;  start:    dP = P - gsl_cdf_gamma_P (x, a, 1.0);    phi = gsl_ran_gamma_pdf (x, a, 1.0);    if (dP == 0.0)      goto end;    lambda = dP / GSL_MAX (2 * fabs (dP / x), phi);    {      double step0 = lambda;      double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;      double step = step0;      if (fabs (step1) < fabs (step0))        step += step1;      if (x + step > 0)        x += step;      else        {          x /= 2.0;        }      if (fabs (step0) > 1e-10 * x)        goto start;    }  }end:  return b * x;}doublegsl_cdf_gamma_Qinv (const double Q, const double a, const double b){  double x;  if (Q == 1.0)    {      return 0.0;    }  else if (Q == 0.0)    {      return GSL_POSINF;    }  /* Consider, small, large and intermediate cases separately.  The     boundaries at 0.05 and 0.95 have not been optimised, but seem ok     for an initial approximation. */  if (Q < 0.05)    {      double x0 = -log (Q) + gsl_sf_lngamma (a);      x = x0;    }  else if (Q > 0.95)    {      double x0 = exp ((gsl_sf_lngamma (a) + log1p (-Q)) / a);      x = x0;    }  else    {      double xg = gsl_cdf_ugaussian_Qinv (Q);      double x0 = (xg < -sqrt (a)) ? a : sqrt (a) * xg + a;      x = x0;    }  /* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards     to an improved value of x (Abramowitz & Stegun, 3.6.6)      where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf.   */  {    double lambda, dQ, phi;  start:    dQ = Q - gsl_cdf_gamma_Q (x, a, 1.0);    phi = gsl_ran_gamma_pdf (x, a, 1.0);    if (dQ == 0.0)      goto end;    lambda = -dQ / GSL_MAX (2 * fabs (dQ / x), phi);    {      double step0 = lambda;      double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0;      double step = step0;      if (fabs (step1) < fabs (step0))        step += step1;      if (x + step > 0)        x += step;      else        {          x /= 2.0;        }      if (fabs (step0) > 1e-10 * x)        goto start;    }  }end:  return b * x;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -