⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qag.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* integration/qag.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_integration.h>#include "initialise.c"#include "set_initial.c"#include "qpsrt.c"#include "util.c"static intqag (const gsl_function *f,     const double a, const double b,     const double epsabs, const double epsrel,     const size_t limit,     gsl_integration_workspace * workspace,     double * result, double * abserr,     gsl_integration_rule * q) ;intgsl_integration_qag (const gsl_function *f,                     double a, double b,                     double epsabs, double epsrel, size_t limit,                     int key,                     gsl_integration_workspace * workspace,                     double * result, double * abserr){  int status ;  gsl_integration_rule * integration_rule = gsl_integration_qk15 ;  if (key < GSL_INTEG_GAUSS15)    {      key = GSL_INTEG_GAUSS15 ;    }   else if (key > GSL_INTEG_GAUSS61)     {      key = GSL_INTEG_GAUSS61 ;    }  switch (key)     {    case GSL_INTEG_GAUSS15:      integration_rule = gsl_integration_qk15 ;      break ;    case GSL_INTEG_GAUSS21:      integration_rule = gsl_integration_qk21 ;      break ;    case GSL_INTEG_GAUSS31:      integration_rule = gsl_integration_qk31 ;       break ;    case GSL_INTEG_GAUSS41:      integration_rule = gsl_integration_qk41 ;      break ;          case GSL_INTEG_GAUSS51:      integration_rule = gsl_integration_qk51 ;      break ;          case GSL_INTEG_GAUSS61:      integration_rule = gsl_integration_qk61 ;      break ;          default:      GSL_ERROR("value of key does specify a known integration rule",                 GSL_EINVAL) ;    }  status = qag (f, a, b, epsabs, epsrel, limit,                workspace,                 result, abserr,                 integration_rule) ;    return status ;}static intqag (const gsl_function * f,     const double a, const double b,     const double epsabs, const double epsrel,     const size_t limit,     gsl_integration_workspace * workspace,     double *result, double *abserr,     gsl_integration_rule * q){  double area, errsum;  double result0, abserr0, resabs0, resasc0;  double tolerance;  size_t iteration = 0;  int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0;  double round_off;       /* Initialize results */  initialise (workspace, a, b);  *result = 0;  *abserr = 0;  if (limit > workspace->limit)    {      GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ;    }  if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))    {      GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",                 GSL_EBADTOL);    }  /* perform the first integration */  q (f, a, b, &result0, &abserr0, &resabs0, &resasc0);  set_initial_result (workspace, result0, abserr0);  /* Test on accuracy */  tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0));  /* need IEEE rounding here to match original quadpack behavior */  round_off = GSL_COERCE_DBL (50 * GSL_DBL_EPSILON * resabs0);  if (abserr0 <= round_off && abserr0 > tolerance)    {      *result = result0;      *abserr = abserr0;      GSL_ERROR ("cannot reach tolerance because of roundoff error "                 "on first attempt", GSL_EROUND);    }  else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0)    {      *result = result0;      *abserr = abserr0;      return GSL_SUCCESS;    }  else if (limit == 1)    {      *result = result0;      *abserr = abserr0;      GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER);    }  area = result0;  errsum = abserr0;  iteration = 1;  do    {      double a1, b1, a2, b2;      double a_i, b_i, r_i, e_i;      double area1 = 0, area2 = 0, area12 = 0;      double error1 = 0, error2 = 0, error12 = 0;      double resasc1, resasc2;      double resabs1, resabs2;      /* Bisect the subinterval with the largest error estimate */      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);      a1 = a_i;       b1 = 0.5 * (a_i + b_i);      a2 = b1;      b2 = b_i;      q (f, a1, b1, &area1, &error1, &resabs1, &resasc1);      q (f, a2, b2, &area2, &error2, &resabs2, &resasc2);      area12 = area1 + area2;      error12 = error1 + error2;      errsum += (error12 - e_i);      area += area12 - r_i;      if (resasc1 != error1 && resasc2 != error2)        {          double delta = r_i - area12;          if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i)            {              roundoff_type1++;            }          if (iteration >= 10 && error12 > e_i)            {              roundoff_type2++;            }        }      tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area));      if (errsum > tolerance)        {          if (roundoff_type1 >= 6 || roundoff_type2 >= 20)            {              error_type = 2;   /* round off error */            }          /* set error flag in the case of bad integrand behaviour at             a point of the integration range */          if (subinterval_too_small (a1, a2, b2))            {              error_type = 3;            }        }      update (workspace, a1, b1, area1, error1, a2, b2, area2, error2);      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);      iteration++;    }  while (iteration < limit && !error_type && errsum > tolerance);  *result = sum_results (workspace);  *abserr = errsum;  if (errsum <= tolerance)    {      return GSL_SUCCESS;    }  else if (error_type == 2)    {      GSL_ERROR ("roundoff error prevents tolerance from being achieved",                 GSL_EROUND);    }  else if (error_type == 3)    {      GSL_ERROR ("bad integrand behavior found in the integration interval",                 GSL_ESING);    }  else if (iteration == limit)    {      GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER);    }  else    {      GSL_ERROR ("could not integrate function", GSL_EFAILED);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -