⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qaws.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* integration/qaws.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <float.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_integration.h>#include "initialise.c"#include "append.c"#include "qpsrt.c"#include "util.c"#include "qc25s.c"intgsl_integration_qaws (gsl_function * f,                      const double a, const double b,                      gsl_integration_qaws_table * t,                      const double epsabs, const double epsrel,                      const size_t limit,                      gsl_integration_workspace * workspace,                      double *result, double *abserr){  double area, errsum;  double result0, abserr0;  double tolerance;  size_t iteration = 0;  int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0;  /* Initialize results */  initialise (workspace, a, b);  *result = 0;  *abserr = 0;  if (limit > workspace->limit)    {      GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ;    }  if (b <= a)     {      GSL_ERROR ("limits must form an ascending sequence, a < b", GSL_EINVAL) ;    }  if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))    {      GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",                 GSL_EBADTOL);    }  /* perform the first integration */  {    double area1, area2;    double error1, error2;    int err_reliable1, err_reliable2;    double a1 = a;    double b1 = 0.5 * (a + b);    double a2 = b1;    double b2 = b;    qc25s (f, a, b, a1, b1, t, &area1, &error1, &err_reliable1);    qc25s (f, a, b, a2, b2, t, &area2, &error2, &err_reliable2);        if (error1 > error2)      {        append_interval (workspace, a1, b1, area1, error1);        append_interval (workspace, a2, b2, area2, error2);      }    else      {        append_interval (workspace, a2, b2, area2, error2);        append_interval (workspace, a1, b1, area1, error1);      }        result0 = area1 + area2;    abserr0 = error1 + error2;  }  /* Test on accuracy */  tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0));  /* Test on accuracy, use 0.01 relative error as an extra safety     margin on the first iteration (ignored for subsequent iterations) */  if (abserr0 < tolerance && abserr0 < 0.01 * fabs(result0))    {      *result = result0;      *abserr = abserr0;      return GSL_SUCCESS;    }  else if (limit == 1)    {      *result = result0;      *abserr = abserr0;      GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER);    }  area = result0;  errsum = abserr0;  iteration = 2;  do    {      double a1, b1, a2, b2;      double a_i, b_i, r_i, e_i;      double area1 = 0, area2 = 0, area12 = 0;      double error1 = 0, error2 = 0, error12 = 0;      int err_reliable1, err_reliable2;      /* Bisect the subinterval with the largest error estimate */      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);      a1 = a_i;       b1 = 0.5 * (a_i + b_i);      a2 = b1;      b2 = b_i;      qc25s (f, a, b, a1, b1, t, &area1, &error1, &err_reliable1);      qc25s (f, a, b, a2, b2, t, &area2, &error2, &err_reliable2);      area12 = area1 + area2;      error12 = error1 + error2;      errsum += (error12 - e_i);      area += area12 - r_i;      if (err_reliable1 && err_reliable2)        {          double delta = r_i - area12;          if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i)            {              roundoff_type1++;            }          if (iteration >= 10 && error12 > e_i)            {              roundoff_type2++;            }        }      tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area));      if (errsum > tolerance)        {          if (roundoff_type1 >= 6 || roundoff_type2 >= 20)            {              error_type = 2;   /* round off error */            }          /* set error flag in the case of bad integrand behaviour at             a point of the integration range */          if (subinterval_too_small (a1, a2, b2))            {              error_type = 3;            }        }      update (workspace, a1, b1, area1, error1, a2, b2, area2, error2);      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);      iteration++;    }  while (iteration < limit && !error_type && errsum > tolerance);  *result = sum_results (workspace);  *abserr = errsum;  if (errsum <= tolerance)    {      return GSL_SUCCESS;    }  else if (error_type == 2)    {      GSL_ERROR ("roundoff error prevents tolerance from being achieved",                 GSL_EROUND);    }  else if (error_type == 3)    {      GSL_ERROR ("bad integrand behavior found in the integration interval",                 GSL_ESING);    }  else if (iteration == limit)    {      GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER);    }  else    {      GSL_ERROR ("could not integrate function", GSL_EFAILED);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -