⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* roots/test.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Reid Priedhorsky, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_test.h>#include <gsl/gsl_roots.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_ieee_utils.h>#include "roots.h"#include "test.h"/* stopping parameters */const double EPSREL = (10 * GSL_DBL_EPSILON);const double EPSABS = (10 * GSL_DBL_EPSILON);const unsigned int MAX_ITERATIONS = 150;void my_error_handler (const char *reason, const char *file,                       int line, int err);#define WITHIN_TOL(a, b, epsrel, epsabs) \ ((fabs((a) - (b)) < (epsrel) * GSL_MIN(fabs(a), fabs(b)) + (epsabs)))intmain (void){  gsl_function F_sin, F_cos, F_func1, F_func2, F_func3, F_func4,    F_func5, F_func6;    gsl_function_fdf FDF_sin, FDF_cos, FDF_func1, FDF_func2, FDF_func3, FDF_func4,    FDF_func5, FDF_func6;  const gsl_root_fsolver_type * fsolver[4] ;  const gsl_root_fdfsolver_type * fdfsolver[4] ;  const gsl_root_fsolver_type ** T;  const gsl_root_fdfsolver_type ** S;  gsl_ieee_env_setup();  fsolver[0] = gsl_root_fsolver_bisection;  fsolver[1] = gsl_root_fsolver_brent;  fsolver[2] = gsl_root_fsolver_falsepos;  fsolver[3] = 0;  fdfsolver[0] = gsl_root_fdfsolver_newton;  fdfsolver[1] = gsl_root_fdfsolver_secant;  fdfsolver[2] = gsl_root_fdfsolver_steffenson;  fdfsolver[3] = 0;  F_sin = create_function (sin_f) ;  F_cos = create_function (cos_f) ;   F_func1 = create_function (func1) ;  F_func2 = create_function (func2) ;  F_func3 = create_function (func3) ;  F_func4 = create_function (func4) ;  F_func5 = create_function (func5) ;  F_func6 = create_function (func6) ;  FDF_sin = create_fdf (sin_f, sin_df, sin_fdf) ;  FDF_cos = create_fdf (cos_f, cos_df, cos_fdf) ;  FDF_func1 = create_fdf (func1, func1_df, func1_fdf) ;  FDF_func2 = create_fdf (func2, func2_df, func2_fdf) ;  FDF_func3 = create_fdf (func3, func3_df, func3_fdf) ;  FDF_func4 = create_fdf (func4, func4_df, func4_fdf) ;  FDF_func5 = create_fdf (func5, func5_df, func5_fdf) ;  FDF_func6 = create_fdf (func6, func6_df, func6_fdf) ;  gsl_set_error_handler (&my_error_handler);  for (T = fsolver ; *T != 0 ; T++)    {      test_f (*T, "sin(x) [3, 4]", &F_sin, 3.0, 4.0, M_PI);      test_f (*T, "sin(x) [-4, -3]", &F_sin, -4.0, -3.0, -M_PI);      test_f (*T, "sin(x) [-1/3, 1]", &F_sin, -1.0 / 3.0, 1.0, 0.0);      test_f (*T, "cos(x) [0, 3]", &F_cos, 0.0, 3.0, M_PI / 2.0);      test_f (*T, "cos(x) [-3, 0]", &F_cos, -3.0, 0.0, -M_PI / 2.0);      test_f (*T, "x^20 - 1 [0.1, 2]", &F_func1, 0.1, 2.0, 1.0);      test_f (*T, "sqrt(|x|)*sgn(x)", &F_func2, -1.0 / 3.0, 1.0, 0.0);      test_f (*T, "x^2 - 1e-8 [0, 1]", &F_func3, 0.0, 1.0, sqrt (1e-8));      test_f (*T, "x exp(-x) [-1/3, 2]", &F_func4, -1.0 / 3.0, 2.0, 0.0);      test_f (*T, "(x - 1)^7 [0.9995, 1.0002]", &F_func6, 0.9995, 1.0002, 1.0);            test_f_e (*T, "invalid range check [4, 0]", &F_sin, 4.0, 0.0, M_PI);      test_f_e (*T, "invalid range check [1, 1]", &F_sin, 1.0, 1.0, M_PI);      test_f_e (*T, "invalid range check [0.1, 0.2]", &F_sin, 0.1, 0.2, M_PI);    }  for (S = fdfsolver ; *S != 0 ; S++)    {      test_fdf (*S,"sin(x) {3.4}", &FDF_sin, 3.4, M_PI);      test_fdf (*S,"sin(x) {-3.3}", &FDF_sin, -3.3, -M_PI);      test_fdf (*S,"sin(x) {0.5}", &FDF_sin, 0.5, 0.0);      test_fdf (*S,"cos(x) {0.6}", &FDF_cos, 0.6, M_PI / 2.0);      test_fdf (*S,"cos(x) {-2.5}", &FDF_cos, -2.5, -M_PI / 2.0);      test_fdf (*S,"x^{20} - 1 {0.9}", &FDF_func1, 0.9, 1.0);      test_fdf (*S,"x^{20} - 1 {1.1}", &FDF_func1, 1.1, 1.0);      test_fdf (*S,"sqrt(|x|)*sgn(x) {1.001}", &FDF_func2, 0.001, 0.0);      test_fdf (*S,"x^2 - 1e-8 {1}", &FDF_func3, 1.0, sqrt (1e-8));      test_fdf (*S,"x exp(-x) {-2}", &FDF_func4, -2.0, 0.0);      test_fdf_e (*S,"max iterations x -> +Inf, x exp(-x) {2}", &FDF_func4, 2.0, 0.0);      test_fdf_e (*S,"max iterations x -> -Inf, 1/(1 + exp(-x)) {0}", &FDF_func5, 0.0, 0.0);    }  test_fdf (gsl_root_fdfsolver_steffenson,            "(x - 1)^7 {0.9}", &FDF_func6, 0.9, 1.0);      /* now summarize the results */  exit (gsl_test_summary ());}/* Using gsl_root_bisection, find the root of the function pointed to by f,   using the interval [lower_bound, upper_bound]. Check if f succeeded and   that it was accurate enough. */voidtest_f (const gsl_root_fsolver_type * T, const char * description, gsl_function *f,        double lower_bound, double upper_bound, double correct_root){  int status;  size_t iterations = 0;  double r, a, b;  double x_lower, x_upper;  gsl_root_fsolver * s;  x_lower = lower_bound;  x_upper = upper_bound;  s = gsl_root_fsolver_alloc(T);  gsl_root_fsolver_set(s, f, x_lower, x_upper) ;    do     {      iterations++ ;      gsl_root_fsolver_iterate (s);      r = gsl_root_fsolver_root(s);      a = gsl_root_fsolver_x_lower(s);      b = gsl_root_fsolver_x_upper(s);            if (a > b)        gsl_test (GSL_FAILURE, "interval is invalid (%g,%g)", a, b);      if (r < a || r > b)        gsl_test (GSL_FAILURE, "r lies outside interval %g (%g,%g)", r, a, b);      status = gsl_root_test_interval (a,b, EPSABS, EPSREL);    }  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);  gsl_test (status, "%s, %s (%g obs vs %g expected) ",             gsl_root_fsolver_name(s), description,             gsl_root_fsolver_root(s), correct_root);  if (iterations == MAX_ITERATIONS)    {      gsl_test (GSL_FAILURE, "exceeded maximum number of iterations");    }  /* check the validity of the returned result */  if (!WITHIN_TOL (r, correct_root, EPSREL, EPSABS))    {      gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)",                 r, correct_root);    }  gsl_root_fsolver_free(s);  }voidtest_f_e (const gsl_root_fsolver_type * T,           const char * description, gsl_function *f,          double lower_bound, double upper_bound, double correct_root){  int status;  size_t iterations = 0;  double x_lower, x_upper;  gsl_root_fsolver * s;  x_lower = lower_bound;  x_upper = upper_bound;  s = gsl_root_fsolver_alloc(T);  status = gsl_root_fsolver_set(s, f, x_lower, x_upper) ;  gsl_test (status != GSL_EINVAL, "%s (set), %s", T->name, description);  if (status == GSL_EINVAL)     {      gsl_root_fsolver_free(s);      return ;    }  do     {      iterations++ ;      gsl_root_fsolver_iterate (s);      x_lower = gsl_root_fsolver_x_lower(s);      x_upper = gsl_root_fsolver_x_lower(s);      status = gsl_root_test_interval (x_lower, x_upper,                                       EPSABS, EPSREL);    }  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);  gsl_test (!status, "%s, %s", gsl_root_fsolver_name(s), description,             gsl_root_fsolver_root(s) - correct_root);  gsl_root_fsolver_free(s);}voidtest_fdf (const gsl_root_fdfsolver_type * T, const char * description,         gsl_function_fdf *fdf, double root, double correct_root){  int status;  size_t iterations = 0;  double prev = 0 ;  gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T);  gsl_root_fdfsolver_set (s, fdf, root) ;  do     {      iterations++ ;      prev = gsl_root_fdfsolver_root(s);      gsl_root_fdfsolver_iterate (s);      status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev,                                    EPSABS, EPSREL);    }  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);  gsl_test (status, "%s, %s (%g obs vs %g expected) ",             gsl_root_fdfsolver_name(s), description,             gsl_root_fdfsolver_root(s), correct_root);  if (iterations == MAX_ITERATIONS)    {      gsl_test (GSL_FAILURE, "exceeded maximum number of iterations");    }  /* check the validity of the returned result */  if (!WITHIN_TOL (gsl_root_fdfsolver_root(s), correct_root,                    EPSREL, EPSABS))    {      gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)",                 gsl_root_fdfsolver_root(s), correct_root);    }  gsl_root_fdfsolver_free(s);}voidtest_fdf_e (const gsl_root_fdfsolver_type * T,             const char * description, gsl_function_fdf *fdf,            double root, double correct_root){  int status;  size_t iterations = 0;  double prev = 0 ;  gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T);  status = gsl_root_fdfsolver_set (s, fdf, root) ;  gsl_test (status, "%s (set), %s", T->name, description);  do     {      iterations++ ;      prev = gsl_root_fdfsolver_root(s);      gsl_root_fdfsolver_iterate (s);      status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev,                                    EPSABS, EPSREL);    }  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);  gsl_test (!status, "%s, %s", gsl_root_fdfsolver_name(s),             description, gsl_root_fdfsolver_root(s) - correct_root);  gsl_root_fdfsolver_free(s);}voidmy_error_handler (const char *reason, const char *file, int line, int err){  if (0)    printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -