📄 specfunc-ellint.texi
字号:
@cindex elliptic integralsThe functions described in this section are declared in the header file@file{gsl_sf_ellint.h}.@menu* Definition of Legendre Forms:: * Definition of Carlson Forms:: * Legendre Form of Complete Elliptic Integrals:: * Legendre Form of Incomplete Elliptic Integrals:: * Carlson Forms:: @end menu@node Definition of Legendre Forms@subsection Definition of Legendre Forms@cindex Legendre forms of elliptic integralsThe Legendre forms of elliptic integrals @math{F(\phi,k)},@math{E(\phi,k)} and @math{P(\phi,k,n)} are defined by,@tex\beforedisplay$$\eqalign{F(\phi,k) &= \int_0^\phi dt {1 \over \sqrt{(1 - k^2 \sin^2(t))}}\crE(\phi,k) &= \int_0^\phi dt \sqrt{(1 - k^2 \sin^2(t))}\crP(\phi,k,n) &= \int_0^\phi dt {1 \over (1 + n \sin^2(t)) \sqrt{1 - k^2 \sin^2(t)}}}$$\afterdisplay@end tex@ifinfo@example F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t))) E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t)))P(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t)))@end example@end ifinfo@noindentThe complete Legendre forms are denoted by @math{K(k) = F(\pi/2, k)} and@math{E(k) = E(\pi/2, k)}. Further information on the Legendre forms ofelliptic integrals can be found in Abramowitz & Stegun, Chapter 17. Thenotation used here is based on Carlson, @cite{Numerische Mathematik} 33(1979) 1 and differs slightly from that used by Abramowitz & Stegun.@node Definition of Carlson Forms@subsection Definition of Carlson Forms@cindex Carlson forms of Elliptic integralsThe Carlson symmetric forms of elliptical integrals @math{RC(x,y)},@math{RD(x,y,z)}, @math{RF(x,y,z)} and @math{RJ(x,y,z,p)} are definedby,@tex\beforedisplay$$\eqalign{RC(x,y) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1}\crRD(x,y,z) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\crRF(x,y,z) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\crRJ(x,y,z,p) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1}}$$\afterdisplay@end tex@ifinfo@example RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1) RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2) RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)RJ(x,y,z,p) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)@end example@end ifinfo@node Legendre Form of Complete Elliptic Integrals@subsection Legendre Form of Complete Elliptic Integrals@deftypefun double gsl_sf_ellint_Kcomp (double @var{k}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_Kcomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the complete elliptic integral @math{K(k)} to theaccuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_Ecomp (double @var{k}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_Ecomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the complete elliptic integral @math{E(k)} to theaccuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Legendre Form of Incomplete Elliptic Integrals@subsection Legendre Form of Incomplete Elliptic Integrals@deftypefun double gsl_sf_ellint_F (double @var{phi}, double @var{k}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_F_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{F(\phi,k)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_E (double @var{phi}, double @var{k}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_E_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{E(\phi,k)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_P (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_P_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{P(\phi,k,n)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_D (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_D_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These functions compute the incomplete elliptic integral@math{D(\phi,k,n)} which is defined through the Carlson form @math{RD(x,y,z)}by the following relation, @tex\beforedisplay$$D(\phi,k,n) = RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1).$$\afterdisplay@end tex@ifinfo@exampleD(\phi,k,n) = RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1).@end example@end ifinfo@comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Carlson Forms@subsection Carlson Forms@deftypefun double gsl_sf_ellint_RC (double @var{x}, double @var{y}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_RC_e (double @var{x}, double @var{y}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{RC(x,y)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_RD (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_RD_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{RD(x,y,z)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_RF (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_RF_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{RF(x,y,z)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_ellint_RJ (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode})@deftypefunx int gsl_sf_ellint_RJ_e (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result})These routines compute the incomplete elliptic integral @math{RJ(x,y,z,p)}to the accuracy specified by the mode variable @var{mode}.@comment Exceptional Return Values: GSL_EDOM@end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -