📄 specfunc-exp.texi
字号:
@cindex exponential function@cindex expThe functions described in this section are declared in the header file@file{gsl_sf_exp.h}.@menu* Exponential Function:: * Relative Exponential Functions:: * Exponentiation With Error Estimate:: @end menu@node Exponential Function@subsection Exponential Function@deftypefun double gsl_sf_exp (double @var{x})@deftypefunx int gsl_sf_exp_e (double @var{x}, gsl_sf_result * @var{result})These routines provide an exponential function @math{\exp(x)} using GSLsemantics and error checking.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_exp_e10_e (double @var{x}, gsl_sf_result_e10 * @var{result})This function computes the exponential @math{\exp(x)} using the@code{gsl_sf_result_e10} type to return a result with extended range.This function may be useful if the value of @math{\exp(x)} wouldoverflow the numeric range of @code{double}.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_exp_mult (double @var{x}, double @var{y})@deftypefunx int gsl_sf_exp_mult_e (double @var{x}, double @var{y}, gsl_sf_result * @var{result})These routines exponentiate @var{x} and multiply by the factor @var{y}to return the product @math{y \exp(x)}.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_exp_mult_e10_e (const double @var{x}, const double @var{y}, gsl_sf_result_e10 * @var{result})This function computes the product @math{y \exp(x)} using the@code{gsl_sf_result_e10} type to return a result with extended numericrange.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@node Relative Exponential Functions@subsection Relative Exponential Functions@deftypefun double gsl_sf_expm1 (double @var{x})@deftypefunx int gsl_sf_expm1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the quantity @math{\exp(x)-1} using an algorithmthat is accurate for small @math{x}.@comment Exceptional Return Values: GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_exprel (double @var{x})@deftypefunx int gsl_sf_exprel_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the quantity @math{(\exp(x)-1)/x} using analgorithm that is accurate for small @math{x}. For small @math{x} thealgorithm is based on the expansion @math{(\exp(x)-1)/x = 1 + x/2 +x^2/(2*3) + x^3/(2*3*4) + \dots}.@comment Exceptional Return Values: GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_exprel_2 (double @var{x})@deftypefunx int gsl_sf_exprel_2_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the quantity @math{2(\exp(x)-1-x)/x^2} using analgorithm that is accurate for small @math{x}. For small @math{x} thealgorithm is based on the expansion @math{2(\exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + \dots}.@comment Exceptional Return Values: GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_exprel_n (int @var{n}, double @var{x})@deftypefunx int gsl_sf_exprel_n_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result})These routines compute the @math{N}-relative exponential, which is the@var{n}-th generalization of the functions @code{gsl_sf_exprel} and@code{gsl_sf_exprel2}. The @math{N}-relative exponential is given by,@tex\beforedisplay$$\eqalign{\hbox{exprel}_N(x) &= N!/x^N \left(\exp(x) - \sum_{k=0}^{N-1} x^k/k!\right)\cr &= 1 + x/(N+1) + x^2/((N+1)(N+2)) + \dots\cr &= {}_1F_1(1,1+N,x)\cr}$$\afterdisplay@end tex@ifinfo@exampleexprel_N(x) = N!/x^N (\exp(x) - \sum_@{k=0@}^@{N-1@} x^k/k!) = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... = 1F1 (1,1+N,x)@end example@end ifinfo@comment Exceptional Return Values: @end deftypefun@node Exponentiation With Error Estimate@subsection Exponentiation With Error Estimate@deftypefun int gsl_sf_exp_err_e (double @var{x}, double @var{dx}, gsl_sf_result * @var{result})This function exponentiates @var{x} with an associated absolute error@var{dx}.@comment Exceptional Return Values: @end deftypefun@deftypefun int gsl_sf_exp_err_e10_e (double @var{x}, double @var{dx}, gsl_sf_result_e10 * @var{result})This function exponentiates a quantity @var{x} with an associated absolute error @var{dx} using the @code{gsl_sf_result_e10} type to return a result withextended range.@comment Exceptional Return Values: @end deftypefun@deftypefun int gsl_sf_exp_mult_err_e (double @var{x}, double @var{dx}, double @var{y}, double @var{dy}, gsl_sf_result * @var{result})This routine computes the product @math{y \exp(x)} for the quantities@var{x}, @var{y} with associated absolute errors @var{dx}, @var{dy}.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_exp_mult_err_e10_e (double @var{x}, double @var{dx}, double @var{y}, double @var{dy}, gsl_sf_result_e10 * @var{result})This routine computes the product @math{y \exp(x)} for the quantities@var{x}, @var{y} with associated absolute errors @var{dx}, @var{dy} using the@code{gsl_sf_result_e10} type to return a result with extended range.@comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -