⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 specfunc-hyperg.texi

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 TEXI
字号:
@cindex hypergeometric functions@cindex confluent hypergeometric functionsHypergeometric functions are described in Abramowitz & Stegun, Chapters13 and 15.  These functions are declared in the header file@file{gsl_sf_hyperg.h}.@deftypefun double gsl_sf_hyperg_0F1 (double @var{c}, double @var{x})@deftypefunx int gsl_sf_hyperg_0F1_e (double @var{c}, double @var{x}, gsl_sf_result * @var{result})These routines compute the hypergeometric function @c{${}_0F_1(c,x)$}@math{0F1(c,x)}.  @comment It is related to Bessel functions@comment 0F1[c,x] =@comment   Gamma[c]    x^(1/2(1-c)) I_(c-1)(2 Sqrt[x])@comment   Gamma[c] (-x)^(1/2(1-c)) J_(c-1)(2 Sqrt[-x])@comment exceptions: GSL_EOVRFLW, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_hyperg_1F1_int (int @var{m}, int @var{n}, double @var{x})@deftypefunx int gsl_sf_hyperg_1F1_int_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result * @var{result})These routines compute the confluent hypergeometric function@c{${}_1F_1(m,n,x) = M(m,n,x)$}@math{1F1(m,n,x) = M(m,n,x)} for integer parameters @var{m}, @var{n}.@comment exceptions: @end deftypefun@deftypefun double gsl_sf_hyperg_1F1 (double @var{a}, double @var{b}, double @var{x})@deftypefunx int gsl_sf_hyperg_1F1_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result})These routines compute the confluent hypergeometric function@c{${}_1F_1(a,b,x) = M(a,b,x)$}@math{1F1(a,b,x) = M(a,b,x)} for general parameters @var{a}, @var{b}.@comment exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_U_int (int @var{m}, int @var{n}, double @var{x})@deftypefunx int gsl_sf_hyperg_U_int_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result * @var{result})These routines compute the confluent hypergeometric function@math{U(m,n,x)} for integer parameters @var{m}, @var{n}.@comment exceptions:@end deftypefun@deftypefun int gsl_sf_hyperg_U_int_e10_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result_e10 * @var{result})This routine computes the confluent hypergeometric function@math{U(m,n,x)} for integer parameters @var{m}, @var{n} using the@code{gsl_sf_result_e10} type to return a result with extended range.@end deftypefun@deftypefun double gsl_sf_hyperg_U (double @var{a}, double @var{b}, double @var{x})@deftypefunx int gsl_sf_hyperg_U_e (double @var{a}, double @var{b}, double @var{x})These routines compute the confluent hypergeometric function @math{U(a,b,x)}.@comment exceptions:@end deftypefun@deftypefun int gsl_sf_hyperg_U_e10_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result_e10 * @var{result})This routine computes the confluent hypergeometric function@math{U(a,b,x)} using the @code{gsl_sf_result_e10} type to return aresult with extended range. @comment exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_2F1 (double @var{a}, double @var{b}, double @var{c}, double @var{x})@deftypefunx int gsl_sf_hyperg_2F1_e (double @var{a}, double @var{b}, double @var{c}, double @var{x}, gsl_sf_result * @var{result})These routines compute the Gauss hypergeometric function @c{${}_2F_1(a,b,c,x)$}@math{2F1(a,b,c,x)} for @math{|x| < 1}.  If the arguments @math{(a,b,c,x)} are too close to a singularity thenthe function can return the error code @code{GSL_EMAXITER} when theseries approximation converges too slowly.  This occurs in the region of@math{x=1}, @math{c - a - b = m} for integer m.@comment exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_2F1_conj (double @var{aR}, double @var{aI}, double @var{c}, double @var{x})@deftypefunx int gsl_sf_hyperg_2F1_conj_e (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}, gsl_sf_result * @var{result})These routines compute the Gauss hypergeometric function@c{${}_2F_1(a_R + i a_I, aR - i aI, c, x)$}@math{2F1(a_R + i a_I, a_R - i a_I, c, x)} with complex parameters for @math{|x| < 1}.exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_2F1_renorm (double @var{a}, double @var{b}, double @var{c}, double @var{x})@deftypefunx int gsl_sf_hyperg_2F1_renorm_e (double @var{a}, double @var{b}, double @var{c}, double @var{x}, gsl_sf_result * @var{result})These routines compute the renormalized Gauss hypergeometric function@c{${}_2F_1(a,b,c,x) / \Gamma(c)$}@math{2F1(a,b,c,x) / \Gamma(c)} for @math{|x| < 1}.@comment exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_2F1_conj_renorm (double @var{aR}, double @var{aI}, double @var{c}, double @var{x})@deftypefunx int gsl_sf_hyperg_2F1_conj_renorm_e (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}, gsl_sf_result * @var{result})These routines compute the renormalized Gauss hypergeometric function@c{${}_2F_1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)$}@math{2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)} for @math{|x| < 1}.@comment exceptions:@end deftypefun@deftypefun double gsl_sf_hyperg_2F0 (double @var{a}, double @var{b}, double @var{x})@deftypefunx int gsl_sf_hyperg_2F0_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result})These routines compute the hypergeometric function @c{${}_2F_0(a,b,x)$}@math{2F0(a,b,x)}.  The series representationis a divergent hypergeometric series.  However, for @math{x < 0} wehave @c{${}_2F_0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)$}@math{2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)}@comment exceptions: GSL_EDOM@end deftypefun

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -