⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 specfunc-fermi-dirac.texi

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 TEXI
字号:
@cindex Fermi-Dirac functionThe functions described in this section are declared in the header file@file{gsl_sf_fermi_dirac.h}.@menu* Complete Fermi-Dirac Integrals::  * Incomplete Fermi-Dirac Integrals::  @end menu@node Complete Fermi-Dirac Integrals@subsection Complete Fermi-Dirac Integrals@cindex complete Fermi-Dirac integrals@cindex Fj(x), Fermi-Dirac integralThe complete Fermi-Dirac integral @math{F_j(x)} is given by,@tex\beforedisplay$$F_j(x)   := {1\over\Gamma(j+1)} \int_0^\infty dt {t^j  \over (\exp(t-x) + 1)}$$\afterdisplay@end tex@ifinfo@exampleF_j(x)   := (1/r\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))@end example@end ifinfo@deftypefun double gsl_sf_fermi_dirac_m1 (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_m1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral with an index of @math{-1}. This integral is given by @c{$F_{-1}(x) = e^x / (1 + e^x)$}@math{F_@{-1@}(x) = e^x / (1 + e^x)}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_0 (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_0_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral with an index of @math{0}. This integral is given by @math{F_0(x) = \ln(1 + e^x)}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_1 (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral with an index of @math{1},@math{F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_2 (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_2_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral with an indexof @math{2},@math{F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_int (int @var{j}, double @var{x})@deftypefunx int gsl_sf_fermi_dirac_int_e (int @var{j}, double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral with an integerindex of @math{j},@math{F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))}.@comment Complete integral F_j(x) for integer j@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_mhalf (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_mhalf_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral @c{$F_{-1/2}(x)$}@math{F_@{-1/2@}(x)}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_half (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_half_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral @c{$F_{1/2}(x)$}@math{F_@{1/2@}(x)}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_fermi_dirac_3half (double @var{x})@deftypefunx int gsl_sf_fermi_dirac_3half_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the complete Fermi-Dirac integral @c{$F_{3/2}(x)$}@math{F_@{3/2@}(x)}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@node Incomplete Fermi-Dirac Integrals@subsection Incomplete Fermi-Dirac Integrals@cindex incomplete Fermi-Dirac integral@cindex Fj(x,b), incomplete Fermi-Dirac integralThe incomplete Fermi-Dirac integral @math{F_j(x,b)} is given by,@tex\beforedisplay$$F_j(x,b)   := {1\over\Gamma(j+1)} \int_b^\infty dt {t^j  \over (\exp(t-x) + 1)}$$\afterdisplay@end tex@ifinfo@exampleF_j(x,b)   := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1))@end example@end ifinfo@deftypefun double gsl_sf_fermi_dirac_inc_0 (double @var{x}, double @var{b})@deftypefunx int gsl_sf_fermi_dirac_inc_0_e (double @var{x}, double @var{b}, gsl_sf_result * @var{result})These routines compute the incomplete Fermi-Dirac integral with an indexof zero,@c{$F_0(x,b) = \ln(1 + e^{b-x}) - (b-x)$}@math{F_0(x,b) = \ln(1 + e^@{b-x@}) - (b-x)}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EDOM@end deftypefun

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -