⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_complex_source.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* fft/test_complex.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include "bitreverse.h"#include "signals.h"#include "compare.h"void FUNCTION(test_complex,func) (size_t stride, size_t n);int FUNCTION(test,offset) (const BASE data[], size_t stride,                            size_t n, size_t offset);void FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n) ;void FUNCTION(test_complex,radix2) (size_t stride, size_t n);int FUNCTION(test,offset) (const BASE data[], size_t stride,                            size_t n, size_t offset){  int status = 0 ;  size_t i, j, k = 0 ;  for (i = 0; i < n; i++)     {      k += 2 ;            for (j = 1; j < stride; j++)        {          status |= data[k] != k + offset ;          k++ ;          status |= data[k] != k + offset ;          k++ ;        }    }  return status ;}void FUNCTION(test_complex,func) (size_t stride, size_t n) {  size_t i ;  int status ;  TYPE(gsl_fft_complex_wavetable) * cw ;  TYPE(gsl_fft_complex_workspace) * cwork ;  BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));  for (i = 0 ; i < 2 * n * stride ; i++)    {      complex_data[i] = (BASE)i ;      complex_tmp[i] = (BASE)(i + 1000.0) ;      fft_complex_data[i] = (BASE)(i + 2000.0) ;      fft_complex_tmp[i] = (BASE)(i + 3000.0) ;    }  gsl_set_error_handler (NULL); /* abort on any errors */  /* Test allocation */  {    cw = FUNCTION(gsl_fft_complex_wavetable,alloc) (n);    gsl_test (cw == 0, NAME(gsl_fft_complex_wavetable)               "_alloc, n = %d, stride = %d", n, stride);  }  {    cwork = FUNCTION(gsl_fft_complex_workspace,alloc) (n);    gsl_test (cwork == 0, NAME(gsl_fft_complex_workspace)               "_alloc, n = %d", n);  }  /* Test mixed radix fft with noise */  {    FUNCTION(fft_signal,complex_noise) (n, stride, complex_data, fft_complex_data);    for (i = 0 ; i < n ; i++)      {        REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ;        IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;      }        FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);    for (i = 0 ; i < n ; i++)      {        REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ;        IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;      }    status = FUNCTION(compare_complex,results) ("dft", fft_complex_data,                                                "fft of noise", complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_forward with signal_noise, n = %d, stride = %d",  n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_forward avoids unstrided data, n = %d, stride = %d",                  n, stride);      }  }    /* Test the inverse fft */  {    status = FUNCTION(gsl_fft_complex,inverse) (complex_data, stride, n, cw, cwork);    status = FUNCTION(compare_complex,results) ("orig", complex_tmp,                                                "fft inverse", complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_inverse with signal_noise, n = %d, stride = %d", n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_inverse other data untouched, n = %d, stride = %d",                  n, stride);      }  }  /* Test the backward fft */  {    status = FUNCTION(gsl_fft_complex,backward) (fft_complex_tmp, stride, n, cw, cwork);    for (i = 0; i < n; i++)      {        REAL(complex_tmp,stride,i) *= n;        IMAG(complex_tmp,stride,i) *= n;      }    status = FUNCTION(compare_complex,results) ("orig",                                                 complex_tmp,                                                "fft backward",                                                 fft_complex_tmp,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_backward with signal_noise, n = %d, stride = %d", n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_backward avoids unstrided data, n = %d, stride = %d",                  n, stride);      }  }  /* Test a pulse signal */    {    FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data,                                        fft_complex_data);    FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);    status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,                                                "fft of pulse", complex_data,                                                 stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_forward with signal_pulse, n = %d, stride = %d", n, stride);  }  /* Test a constant signal */  {    FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data,                                           fft_complex_data);    FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);    status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,                                                "fft of constant",                                                 complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_forward with signal_constant, n = %d, stride = %d", n, stride);  }  /* Test an exponential (cos/sin) signal */    {    status = 0;    for (i = 0; i < n; i++)      {        FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data,                                          fft_complex_data);        FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork);        status |= FUNCTION(compare_complex,results) ("analytic",                                                      fft_complex_data,                                                     "fft of exp",                                                      complex_data,                                                     stride, n, 1e6);      }    gsl_test (status, NAME(gsl_fft_complex)               "_forward with signal_exp, n = %d, stride = %d", n, stride);  }  FUNCTION(gsl_fft_complex_wavetable,free) (cw);  FUNCTION(gsl_fft_complex_workspace,free) (cwork);    free (complex_data);  free (complex_tmp);  free (fft_complex_data);  free (fft_complex_tmp);}void FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n) {  int status ;  size_t logn, i ;  BASE * tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * data = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * reversed_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));    for (i = 0; i <  2 * stride * n; i++)     {      data[i] = (BASE)i ;    }  memcpy (tmp, data, 2 * n * stride * sizeof(BASE)) ;  logn = 0 ; while (n > (1U<<logn)) {logn++ ; } ;  /* do a naive bit reversal as a baseline for testing the other routines */  for (i = 0; i < n; i++)     {      size_t i_tmp = i ;      size_t j = 0 ;      size_t bit ;      for (bit = 0; bit < logn; bit++)        {          j <<= 1;              /* reverse shift i into j */          j |= i_tmp & 1;          i_tmp >>= 1;        }      reversed_data[2*j*stride] = data[2*i*stride] ;      reversed_data[2*j*stride+1] = data[2*i*stride+1] ;    }  FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn);  status = FUNCTION(compare_complex,results) ("naive bit reverse",                                               reversed_data,                                    "gsl_fft_complex_bitreverse_order",                                               data,                                              stride, n, 1e6);  gsl_test (status, "gsl_fft_complex_bitreverse_order, n = %d", n);  free (reversed_data) ;  free (data) ;  free (tmp) ;}void FUNCTION(test_complex,radix2) (size_t stride, size_t n) {  size_t i ;  int status ;  BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE));  BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE));  for (i = 0 ; i < 2 * n * stride ; i++)    {      complex_data[i] = (BASE)i ;      complex_tmp[i] = (BASE)(i + 1000.0) ;      fft_complex_data[i] = (BASE)(i + 2000.0) ;      fft_complex_tmp[i] = (BASE)(i + 3000.0) ;    }  gsl_set_error_handler (NULL); /* abort on any errors */  /* Test radix-2 fft with noise */  {    FUNCTION(fft_signal,complex_noise) (n, stride, complex_data,                                         fft_complex_data);    for (i = 0 ; i < n ; i++)      {        REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ;        IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;      }        FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);    for (i = 0 ; i < n ; i++)      {        REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ;        IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ;      }    status = FUNCTION(compare_complex,results) ("dft", fft_complex_data,                                                "fft of noise", complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_forward with signal_noise, n = %d, stride = %d",                n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_radix2_forward avoids unstrided data, n = %d, stride = %d",                  n, stride);      }  }    /* Test the inverse fft */  {    status = FUNCTION(gsl_fft_complex,radix2_inverse) (complex_data, stride, n);    status = FUNCTION(compare_complex,results) ("orig", complex_tmp,                                                "fft inverse", complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_inverse with signal_noise, n = %d, stride = %d", n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (complex_data, stride, n, 0) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_radix2_inverse other data untouched, n = %d, stride = %d",                  n, stride);      }  }  /* Test the backward fft */  {    status = FUNCTION(gsl_fft_complex,radix2_backward) (fft_complex_tmp, stride, n);    for (i = 0; i < n; i++)      {        REAL(complex_tmp,stride,i) *= n;        IMAG(complex_tmp,stride,i) *= n;      }    status = FUNCTION(compare_complex,results) ("orig",                                                 complex_tmp,                                                "fft backward",                                                 fft_complex_tmp,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_backward with signal_noise, n = %d, stride = %d", n, stride);    if (stride > 1)       {        status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ;                gsl_test (status, NAME(gsl_fft_complex)                   "_radix2_backward avoids unstrided data, n = %d, stride = %d",                  n, stride);      }  }  /* Test a pulse signal */    {    FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data,                                        fft_complex_data);    FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);    status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,                                                "fft of pulse", complex_data,                                                 stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_forward with signal_pulse, n = %d, stride = %d", n, stride);  }  /* Test a constant signal */  {    FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data,                                           fft_complex_data);    FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);    status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data,                                                "fft of constant",                                                 complex_data,                                                stride, n, 1e6);    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_forward with signal_constant, n = %d, stride = %d",               n, stride);  }  /* Test an exponential (cos/sin) signal */    {    status = 0;    for (i = 0; i < n; i++)      {        FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data,                                          fft_complex_data);        FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n);        status |= FUNCTION(compare_complex,results) ("analytic",                                                      fft_complex_data,                                                     "fft of exp",                                                      complex_data,                                                     stride, n, 1e6);      }    gsl_test (status, NAME(gsl_fft_complex)               "_radix2_forward with signal_exp, n = %d, stride = %d", n, stride);  }    free (complex_data);  free (complex_tmp);  free (fft_complex_data);  free (fft_complex_tmp);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -