⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c_radix2.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* fft/c_radix2.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */intFUNCTION(gsl_fft_complex,radix2_forward) (TYPE(gsl_complex_packed_array) data,                                          const size_t stride, const size_t n){  gsl_fft_direction sign = forward;  int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign);  return status;}intFUNCTION(gsl_fft_complex,radix2_backward) (TYPE(gsl_complex_packed_array) data,                                           const size_t stride, const size_t n){  gsl_fft_direction sign = backward;  int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign);  return status;}intFUNCTION(gsl_fft_complex,radix2_inverse) (TYPE(gsl_complex_packed_array) data,                                          const size_t stride, const size_t n){  gsl_fft_direction sign = backward;  int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign);  if (status)    {      return status;    }  /* normalize inverse fft with 1/n */  {    const ATOMIC norm = 1.0 / n;    size_t i;    for (i = 0; i < n; i++)      {        REAL(data,stride,i) *= norm;        IMAG(data,stride,i) *= norm;      }  }  return status;}intFUNCTION(gsl_fft_complex,radix2_transform) (TYPE(gsl_complex_packed_array) data,                                            const size_t stride,                                             const size_t n,                                            const gsl_fft_direction sign){  int result ;  size_t dual;  size_t bit;   size_t logn = 0;  int status;  if (n == 1) /* identity operation */    {      return 0 ;    }  /* make sure that n is a power of 2 */  result = fft_binary_logn(n) ;  if (result == -1)     {      GSL_ERROR ("n is not a power of 2", GSL_EINVAL);    }   else     {      logn = result ;    }  /* bit reverse the ordering of input data for decimation in time algorithm */    status = FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn) ;  /* apply fft recursion */  dual = 1;  for (bit = 0; bit < logn; bit++)    {      ATOMIC w_real = 1.0;      ATOMIC w_imag = 0.0;      const double theta = 2.0 * ((int) sign) * M_PI / (2.0 * (double) dual);      const ATOMIC s = sin (theta);      const ATOMIC t = sin (theta / 2.0);      const ATOMIC s2 = 2.0 * t * t;      size_t a, b;      /* a = 0 */      for (b = 0; b < n; b += 2 * dual)        {          const size_t i = b ;          const size_t j = b + dual;                    const ATOMIC z1_real = REAL(data,stride,j) ;          const ATOMIC z1_imag = IMAG(data,stride,j) ;          const ATOMIC wd_real = z1_real ;          const ATOMIC wd_imag = z1_imag ;                    REAL(data,stride,j) = REAL(data,stride,i) - wd_real;          IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag;          REAL(data,stride,i) += wd_real;          IMAG(data,stride,i) += wd_imag;        }            /* a = 1 .. (dual-1) */      for (a = 1; a < dual; a++)        {          /* trignometric recurrence for w-> exp(i theta) w */          {            const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real;            const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag;            w_real = tmp_real;            w_imag = tmp_imag;          }          for (b = 0; b < n; b += 2 * dual)            {              const size_t i = b + a;              const size_t j = b + a + dual;              const ATOMIC z1_real = REAL(data,stride,j) ;              const ATOMIC z1_imag = IMAG(data,stride,j) ;                            const ATOMIC wd_real = w_real * z1_real - w_imag * z1_imag;              const ATOMIC wd_imag = w_real * z1_imag + w_imag * z1_real;              REAL(data,stride,j) = REAL(data,stride,i) - wd_real;              IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag;              REAL(data,stride,i) += wd_real;              IMAG(data,stride,i) += wd_imag;            }        }      dual *= 2;    }  return 0;}intFUNCTION(gsl_fft_complex,radix2_dif_forward) (TYPE(gsl_complex_packed_array) data,                                               const size_t stride,                                               const size_t n){  gsl_fft_direction sign = forward;  int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign);  return status;}intFUNCTION(gsl_fft_complex,radix2_dif_backward) (TYPE(gsl_complex_packed_array) data,                                               const size_t stride,                                                const size_t n){  gsl_fft_direction sign = backward;  int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign);  return status;}intFUNCTION(gsl_fft_complex,radix2_dif_inverse) (TYPE(gsl_complex_packed_array) data,                                               const size_t stride,                                               const size_t n){  gsl_fft_direction sign = backward;  int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign);  if (status)    {      return status;    }  /* normalize inverse fft with 1/n */  {    const ATOMIC norm = 1.0 / n;    size_t i;    for (i = 0; i < n; i++)      {        REAL(data,stride,i) *= norm;        IMAG(data,stride,i) *= norm;      }  }  return status;}intFUNCTION(gsl_fft_complex,radix2_dif_transform) (TYPE(gsl_complex_packed_array) data,                                       const size_t stride,                                       const size_t n,                                      const gsl_fft_direction sign){  int result ;  size_t dual;  size_t bit;   size_t logn = 0;  int status;  if (n == 1) /* identity operation */    {      return 0 ;    }  /* make sure that n is a power of 2 */  result = fft_binary_logn(n) ;  if (result == -1)     {      GSL_ERROR ("n is not a power of 2", GSL_EINVAL);    }   else     {      logn = result ;    }  /* apply fft recursion */  dual = n / 2;  for (bit = 0; bit < logn; bit++)    {      ATOMIC w_real = 1.0;      ATOMIC w_imag = 0.0;      const double theta = 2.0 * ((int) sign) * M_PI / ((double) (2 * dual));      const ATOMIC s = sin (theta);      const ATOMIC t = sin (theta / 2.0);      const ATOMIC s2 = 2.0 * t * t;      size_t a, b;      for (b = 0; b < dual; b++)        {          for (a = 0; a < n; a+= 2 * dual)            {              const size_t i = b + a;              const size_t j = b + a + dual;                            const ATOMIC t1_real = REAL(data,stride,i) + REAL(data,stride,j);              const ATOMIC t1_imag = IMAG(data,stride,i) + IMAG(data,stride,j);              const ATOMIC t2_real = REAL(data,stride,i) - REAL(data,stride,j);              const ATOMIC t2_imag = IMAG(data,stride,i) - IMAG(data,stride,j);              REAL(data,stride,i) = t1_real;              IMAG(data,stride,i) = t1_imag;              REAL(data,stride,j) = w_real*t2_real - w_imag * t2_imag;              IMAG(data,stride,j) = w_real*t2_imag + w_imag * t2_real;            }          /* trignometric recurrence for w-> exp(i theta) w */          {            const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real;            const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag;            w_real = tmp_real;            w_imag = tmp_imag;          }        }      dual /= 2;    }  /* bit reverse the ordering of output data for decimation in     frequency algorithm */    status = FUNCTION(fft_complex,bitreverse_order)(data, stride, n, logn) ;  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -