⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exppow.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* randist/exppow.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>/* The exponential power probability distribution is     p(x) dx = (1/(2 a Gamma(1+1/b))) * exp(-|x/a|^b) dx   for -infty < x < infty. For b = 1 it reduces to the Laplace   distribution.    The exponential power distribution is related to the gamma   distribution by E = a * pow(G(1/b),1/b), where E is an exponential   power variate and G is a gamma variate.   We use this relation for b < 1. For b >=1 we use rejection methods   based on the laplace and gaussian distributions which should be   faster.   See P. R. Tadikamalla, "Random Sampling from the Exponential Power   Distribution", Journal of the American Statistical Association,   September 1980, Volume 75, Number 371, pages 683-686.   */doublegsl_ran_exppow (const gsl_rng * r, const double a, const double b){  if (b < 1)     {      double u = gsl_rng_uniform (r) ;      double v = gsl_ran_gamma (r, 1/b, 1.0) ;      double z = a * pow(v, 1/b) ;      if (u > 0.5)         {          return z ;        }       else         {          return -z ;        }    }  else if (b == 1)     {      /* Laplace distribution */      return gsl_ran_laplace (r, a) ;    }  else if (b < 2)     {      /* Use laplace distribution for rejection method */      double x, y, h, ratio, u ;      /* Scale factor chosen by upper bound on ratio at b = 2 */      double s = 1.4489 ;       do         {          x = gsl_ran_laplace (r, a) ;          y = gsl_ran_laplace_pdf (x,a) ;          h = gsl_ran_exppow_pdf (x,a,b) ;          ratio = h/(s * y) ;          u = gsl_rng_uniform (r) ;        }       while (u > ratio) ;            return x ;    }  else if (b == 2)    {      /* Gaussian distribution */      return gsl_ran_gaussian (r, a/sqrt(2.0)) ;    }  else    {      /* Use gaussian for rejection method */      double x, y, h, ratio, u ;      const double sigma = a / sqrt(2.0) ;      /* Scale factor chosen by upper bound on ratio at b = infinity.         This could be improved by using a rational function         approximation to the bounding curve. */      double s = 2.4091 ;  /* this is sqrt(pi) e / 2 */      do         {          x = gsl_ran_gaussian (r, sigma) ;          y = gsl_ran_gaussian_pdf (x, sigma) ;          h = gsl_ran_exppow_pdf (x, a, b) ;          ratio = h/(s * y) ;          u = gsl_rng_uniform (r) ;        }       while (u > ratio) ;      return x;    }}doublegsl_ran_exppow_pdf (const double x, const double a, const double b){  double p ;  double lngamma = gsl_sf_lngamma (1+1/b) ;  p = (1/(2*a)) * exp(-pow(fabs(x/a),b) - lngamma);  return p;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -