⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lognormal.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* randist/lognormal.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>/* The lognormal distribution has the form    p(x) dx = 1/(x * sqrt(2 pi sigma^2)) exp(-(ln(x) - zeta)^2/2 sigma^2) dx   for x > 0. Lognormal random numbers are the exponentials of   gaussian random numbers */doublegsl_ran_lognormal (const gsl_rng * r, const double zeta, const double sigma){  double u, v, r2, normal, z;  do    {      /* choose x,y in uniform square (-1,-1) to (+1,+1) */      u = -1 + 2 * gsl_rng_uniform (r);      v = -1 + 2 * gsl_rng_uniform (r);      /* see if it is in the unit circle */      r2 = u * u + v * v;    }  while (r2 > 1.0 || r2 == 0);  normal = u * sqrt (-2.0 * log (r2) / r2);  z =  exp (sigma * normal + zeta);  return z;}doublegsl_ran_lognormal_pdf (const double x, const double zeta, const double sigma){  if (x <= 0)    {      return 0 ;    }  else    {      double u = (log (x) - zeta)/sigma;      double p = 1 / (x * fabs(sigma) * sqrt (2 * M_PI)) * exp (-(u * u) /2);      return p;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -