📄 test.c
字号:
doubletest_ugaussian_pdf (double x){ return gsl_ran_ugaussian_pdf (x);}doubletest_ugaussian_ratio_method (void){ return gsl_ran_ugaussian_ratio_method (r_global);}doubletest_ugaussian_ratio_method_pdf (double x){ return gsl_ran_ugaussian_pdf (x);}doubletest_ugaussian_tail (void){ return gsl_ran_ugaussian_tail (r_global, 3.0);}doubletest_ugaussian_tail_pdf (double x){ return gsl_ran_ugaussian_tail_pdf (x, 3.0);}doubletest_bivariate_gaussian1 (void){ double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return x;}doubletest_bivariate_gaussian1_pdf (double x){ return gsl_ran_gaussian_pdf (x, 3.0);}doubletest_bivariate_gaussian2 (void){ double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return y;}doubletest_bivariate_gaussian2_pdf (double y){ int i, n = 10; double sum = 0; double a = -10, b = 10, dx = (b - a) / n; for (i = 0; i < n; i++) { double x = a + i * dx; sum += gsl_ran_bivariate_gaussian_pdf (x, y, 3.0, 2.0, 0.3) * dx; } return sum;}doubletest_bivariate_gaussian3 (void){ double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return x + y;}doubletest_bivariate_gaussian3_pdf (double x){ double sx = 3.0, sy = 2.0, r = 0.3; double su = (sx + r * sy); double sv = sy * sqrt (1 - r * r); double sigma = sqrt (su * su + sv * sv); return gsl_ran_gaussian_pdf (x, sigma);}doubletest_bivariate_gaussian4 (void){ double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, -0.5, &x, &y); return x + y;}doubletest_bivariate_gaussian4_pdf (double x){ double sx = 3.0, sy = 2.0, r = -0.5; double su = (sx + r * sy); double sv = sy * sqrt (1 - r * r); double sigma = sqrt (su * su + sv * sv); return gsl_ran_gaussian_pdf (x, sigma);}doubletest_geometric (void){ return gsl_ran_geometric (r_global, 0.5);}doubletest_geometric_pdf (unsigned int n){ return gsl_ran_geometric_pdf (n, 0.5);}doubletest_geometric1 (void){ return gsl_ran_geometric (r_global, 1.0);}doubletest_geometric1_pdf (unsigned int n){ return gsl_ran_geometric_pdf (n, 1.0);}doubletest_hypergeometric1 (void){ return gsl_ran_hypergeometric (r_global, 5, 7, 4);}doubletest_hypergeometric1_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 5, 7, 4);}doubletest_hypergeometric2 (void){ return gsl_ran_hypergeometric (r_global, 5, 7, 11);}doubletest_hypergeometric2_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 5, 7, 11);}doubletest_hypergeometric3 (void){ return gsl_ran_hypergeometric (r_global, 5, 7, 1);}doubletest_hypergeometric3_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 5, 7, 1);}doubletest_hypergeometric4 (void){ return gsl_ran_hypergeometric (r_global, 5, 7, 20);}doubletest_hypergeometric4_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 5, 7, 20);}doubletest_hypergeometric5 (void){ return gsl_ran_hypergeometric (r_global, 2, 7, 5);}doubletest_hypergeometric5_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 2, 7, 5);}doubletest_hypergeometric6 (void){ return gsl_ran_hypergeometric (r_global, 2, 10, 3);}doubletest_hypergeometric6_pdf (unsigned int n){ return gsl_ran_hypergeometric_pdf (n, 2, 10, 3);}doubletest_gumbel1 (void){ return gsl_ran_gumbel1 (r_global, 3.12, 4.56);}doubletest_gumbel1_pdf (double x){ return gsl_ran_gumbel1_pdf (x, 3.12, 4.56);}doubletest_gumbel2 (void){ return gsl_ran_gumbel2 (r_global, 3.12, 4.56);}doubletest_gumbel2_pdf (double x){ return gsl_ran_gumbel2_pdf (x, 3.12, 4.56);}doubletest_landau (void){ return gsl_ran_landau (r_global);}doubletest_landau_pdf (double x){ return gsl_ran_landau_pdf (x);}doubletest_levy1 (void){ return gsl_ran_levy (r_global, 5.0, 1.0);}doubletest_levy1_pdf (double x){ return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy2 (void){ return gsl_ran_levy (r_global, 5.0, 2.0);}doubletest_levy2_pdf (double x){ return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy1a (void){ return gsl_ran_levy (r_global, 5.0, 1.01);}doubletest_levy1a_pdf (double x){ return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy2a (void){ return gsl_ran_levy (r_global, 5.0, 1.99);}doubletest_levy2a_pdf (double x){ return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1 (void){ return gsl_ran_levy_skew (r_global, 5.0, 1.0, 0.0);}doubletest_levy_skew1_pdf (double x){ return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2 (void){ return gsl_ran_levy_skew (r_global, 5.0, 2.0, 0.0);}doubletest_levy_skew2_pdf (double x){ return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1a (void){ return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.0);}doubletest_levy_skew1a_pdf (double x){ return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2a (void){ return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.0);}doubletest_levy_skew2a_pdf (double x){ return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1b (void){ return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.001);}doubletest_levy_skew1b_pdf (double x){ return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2b (void){ return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.001);}doubletest_levy_skew2b_pdf (double x){ return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_logistic (void){ return gsl_ran_logistic (r_global, 3.1);}doubletest_logistic_pdf (double x){ return gsl_ran_logistic_pdf (x, 3.1);}doubletest_logarithmic (void){ return gsl_ran_logarithmic (r_global, 0.4);}doubletest_logarithmic_pdf (unsigned int n){ return gsl_ran_logarithmic_pdf (n, 0.4);}doubletest_lognormal (void){ return gsl_ran_lognormal (r_global, 2.7, 1.3);}doubletest_lognormal_pdf (double x){ return gsl_ran_lognormal_pdf (x, 2.7, 1.3);}doubletest_multinomial (void){ const size_t K = 3; const unsigned int sum_n = BINS; unsigned int n[3]; /* Test use of weights instead of probabilities. */ const double p[] = { 2., 7., 1.}; gsl_ran_multinomial ( r_global, K, sum_n, p, n); return n[0];}doubletest_multinomial_pdf (unsigned int n_0){ /* The margional distribution of just 1 variate is binomial. */ size_t K = 2; /* Test use of weights instead of probabilities */ double p[] = { 0.4, 1.6}; const unsigned int sum_n = BINS; unsigned int n[2]; n[0] = n_0; n[1] =sum_n - n_0; return gsl_ran_multinomial_pdf (K, p, n);}doubletest_multinomial_large (void){ const unsigned int sum_n = BINS; unsigned int n[MULTI_DIM]; const double p[MULTI_DIM] = { 0.2, 0.20, 0.17, 0.14, 0.12, 0.07, 0.05, 0.04, 0.01, 0.00 }; gsl_ran_multinomial ( r_global, MULTI_DIM, sum_n, p, n); return n[0];}doubletest_multinomial_large_pdf (unsigned int n_0){ return test_multinomial_pdf(n_0);}doubletest_negative_binomial (void){ return gsl_ran_negative_binomial (r_global, 0.3, 20.0);}doubletest_negative_binomial_pdf (unsigned int n){ return gsl_ran_negative_binomial_pdf (n, 0.3, 20.0);}doubletest_pascal (void){ return gsl_ran_pascal (r_global, 0.8, 3);}doubletest_pascal_pdf (unsigned int n){ return gsl_ran_pascal_pdf (n, 0.8, 3);}doubletest_pareto (void){ return gsl_ran_pareto (r_global, 1.9, 2.75);}doubletest_pareto_pdf (double x){ return gsl_ran_pareto_pdf (x, 1.9, 2.75);}doubletest_rayleigh (void){ return gsl_ran_rayleigh (r_global, 1.9);}doubletest_rayleigh_pdf (double x){ return gsl_ran_rayleigh_pdf (x, 1.9);}doubletest_rayleigh_tail (void){ return gsl_ran_rayleigh_tail (r_global, 2.7, 1.9);}doubletest_rayleigh_tail_pdf (double x){ return gsl_ran_rayleigh_tail_pdf (x, 2.7, 1.9);}doubletest_poisson (void){ return gsl_ran_poisson (r_global, 5.0);}doubletest_poisson_pdf (unsigned int n){ return gsl_ran_poisson_pdf (n, 5.0);}doubletest_poisson_large (void){ return gsl_ran_poisson (r_global, 30.0);}doubletest_poisson_large_pdf (unsigned int n){ return gsl_ran_poisson_pdf (n, 30.0);}doubletest_tdist1 (void){ return gsl_ran_tdist (r_global, 1.75);}doubletest_tdist1_pdf (double x){ return gsl_ran_tdist_pdf (x, 1.75);}doubletest_tdist2 (void){ return gsl_ran_tdist (r_global, 12.75);}doubletest_tdist2_pdf (double x){ return gsl_ran_tdist_pdf (x, 12.75);}doubletest_laplace (void){ return gsl_ran_laplace (r_global, 2.75);}doubletest_laplace_pdf (double x){ return gsl_ran_laplace_pdf (x, 2.75);}doubletest_weibull (void){ return gsl_ran_weibull (r_global, 3.14, 2.75);}doubletest_weibull_pdf (double x){ return gsl_ran_weibull_pdf (x, 3.14, 2.75);}doubletest_weibull1 (void){ return gsl_ran_weibull (r_global, 2.97, 1.0);}doubletest_weibull1_pdf (double x){ return gsl_ran_weibull_pdf (x, 2.97, 1.0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -