⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
📖 第 1 页 / 共 3 页
字号:
doubletest_ugaussian_pdf (double x){  return gsl_ran_ugaussian_pdf (x);}doubletest_ugaussian_ratio_method (void){  return gsl_ran_ugaussian_ratio_method (r_global);}doubletest_ugaussian_ratio_method_pdf (double x){  return gsl_ran_ugaussian_pdf (x);}doubletest_ugaussian_tail (void){  return gsl_ran_ugaussian_tail (r_global, 3.0);}doubletest_ugaussian_tail_pdf (double x){  return gsl_ran_ugaussian_tail_pdf (x, 3.0);}doubletest_bivariate_gaussian1 (void){  double x = 0, y = 0;  gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y);  return x;}doubletest_bivariate_gaussian1_pdf (double x){  return gsl_ran_gaussian_pdf (x, 3.0);}doubletest_bivariate_gaussian2 (void){  double x = 0, y = 0;  gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y);  return y;}doubletest_bivariate_gaussian2_pdf (double y){  int i, n = 10;  double sum = 0;  double a = -10, b = 10, dx = (b - a) / n;  for (i = 0; i < n; i++)    {      double x = a + i * dx;      sum += gsl_ran_bivariate_gaussian_pdf (x, y, 3.0, 2.0, 0.3) * dx;    }  return sum;}doubletest_bivariate_gaussian3 (void){  double x = 0, y = 0;  gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y);  return x + y;}doubletest_bivariate_gaussian3_pdf (double x){  double sx = 3.0, sy = 2.0, r = 0.3;  double su = (sx + r * sy);  double sv = sy * sqrt (1 - r * r);  double sigma = sqrt (su * su + sv * sv);  return gsl_ran_gaussian_pdf (x, sigma);}doubletest_bivariate_gaussian4 (void){  double x = 0, y = 0;  gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, -0.5, &x, &y);  return x + y;}doubletest_bivariate_gaussian4_pdf (double x){  double sx = 3.0, sy = 2.0, r = -0.5;  double su = (sx + r * sy);  double sv = sy * sqrt (1 - r * r);  double sigma = sqrt (su * su + sv * sv);  return gsl_ran_gaussian_pdf (x, sigma);}doubletest_geometric (void){  return gsl_ran_geometric (r_global, 0.5);}doubletest_geometric_pdf (unsigned int n){  return gsl_ran_geometric_pdf (n, 0.5);}doubletest_geometric1 (void){  return gsl_ran_geometric (r_global, 1.0);}doubletest_geometric1_pdf (unsigned int n){  return gsl_ran_geometric_pdf (n, 1.0);}doubletest_hypergeometric1 (void){  return gsl_ran_hypergeometric (r_global, 5, 7, 4);}doubletest_hypergeometric1_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 5, 7, 4);}doubletest_hypergeometric2 (void){  return gsl_ran_hypergeometric (r_global, 5, 7, 11);}doubletest_hypergeometric2_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 5, 7, 11);}doubletest_hypergeometric3 (void){  return gsl_ran_hypergeometric (r_global, 5, 7, 1);}doubletest_hypergeometric3_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 5, 7, 1);}doubletest_hypergeometric4 (void){  return gsl_ran_hypergeometric (r_global, 5, 7, 20);}doubletest_hypergeometric4_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 5, 7, 20);}doubletest_hypergeometric5 (void){  return gsl_ran_hypergeometric (r_global, 2, 7, 5);}doubletest_hypergeometric5_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 2, 7, 5);}doubletest_hypergeometric6 (void){  return gsl_ran_hypergeometric (r_global, 2, 10, 3);}doubletest_hypergeometric6_pdf (unsigned int n){  return gsl_ran_hypergeometric_pdf (n, 2, 10, 3);}doubletest_gumbel1 (void){  return gsl_ran_gumbel1 (r_global, 3.12, 4.56);}doubletest_gumbel1_pdf (double x){  return gsl_ran_gumbel1_pdf (x, 3.12, 4.56);}doubletest_gumbel2 (void){  return gsl_ran_gumbel2 (r_global, 3.12, 4.56);}doubletest_gumbel2_pdf (double x){  return gsl_ran_gumbel2_pdf (x, 3.12, 4.56);}doubletest_landau (void){  return gsl_ran_landau (r_global);}doubletest_landau_pdf (double x){  return gsl_ran_landau_pdf (x);}doubletest_levy1 (void){  return gsl_ran_levy (r_global, 5.0, 1.0);}doubletest_levy1_pdf (double x){  return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy2 (void){  return gsl_ran_levy (r_global, 5.0, 2.0);}doubletest_levy2_pdf (double x){  return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy1a (void){  return gsl_ran_levy (r_global, 5.0, 1.01);}doubletest_levy1a_pdf (double x){  return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy2a (void){  return gsl_ran_levy (r_global, 5.0, 1.99);}doubletest_levy2a_pdf (double x){  return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1 (void){  return gsl_ran_levy_skew (r_global, 5.0, 1.0, 0.0);}doubletest_levy_skew1_pdf (double x){  return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2 (void){  return gsl_ran_levy_skew (r_global, 5.0, 2.0, 0.0);}doubletest_levy_skew2_pdf (double x){  return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1a (void){  return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.0);}doubletest_levy_skew1a_pdf (double x){  return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2a (void){  return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.0);}doubletest_levy_skew2a_pdf (double x){  return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_levy_skew1b (void){  return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.001);}doubletest_levy_skew1b_pdf (double x){  return gsl_ran_cauchy_pdf (x, 5.0);}doubletest_levy_skew2b (void){  return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.001);}doubletest_levy_skew2b_pdf (double x){  return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0);}doubletest_logistic (void){  return gsl_ran_logistic (r_global, 3.1);}doubletest_logistic_pdf (double x){  return gsl_ran_logistic_pdf (x, 3.1);}doubletest_logarithmic (void){  return gsl_ran_logarithmic (r_global, 0.4);}doubletest_logarithmic_pdf (unsigned int n){  return gsl_ran_logarithmic_pdf (n, 0.4);}doubletest_lognormal (void){  return gsl_ran_lognormal (r_global, 2.7, 1.3);}doubletest_lognormal_pdf (double x){  return gsl_ran_lognormal_pdf (x, 2.7, 1.3);}doubletest_multinomial (void){  const size_t K = 3;  const unsigned int sum_n = BINS;  unsigned int n[3];  /* Test use of weights instead of probabilities. */  const double p[] = { 2., 7., 1.};  gsl_ran_multinomial ( r_global, K, sum_n, p, n);  return n[0];}doubletest_multinomial_pdf (unsigned int n_0){  /* The margional distribution of just 1 variate  is binomial. */  size_t K = 2;  /* Test use of weights instead of probabilities */  double p[] = { 0.4, 1.6};  const unsigned int sum_n = BINS;  unsigned int n[2];  n[0] = n_0;  n[1] =sum_n - n_0;  return gsl_ran_multinomial_pdf (K, p, n);}doubletest_multinomial_large (void){  const unsigned int sum_n = BINS;  unsigned int n[MULTI_DIM];  const double p[MULTI_DIM] = { 0.2, 0.20, 0.17, 0.14, 0.12,                                0.07, 0.05, 0.04, 0.01, 0.00  };  gsl_ran_multinomial ( r_global, MULTI_DIM, sum_n, p, n);  return n[0];}doubletest_multinomial_large_pdf (unsigned int n_0){  return test_multinomial_pdf(n_0);}doubletest_negative_binomial (void){  return gsl_ran_negative_binomial (r_global, 0.3, 20.0);}doubletest_negative_binomial_pdf (unsigned int n){  return gsl_ran_negative_binomial_pdf (n, 0.3, 20.0);}doubletest_pascal (void){  return gsl_ran_pascal (r_global, 0.8, 3);}doubletest_pascal_pdf (unsigned int n){  return gsl_ran_pascal_pdf (n, 0.8, 3);}doubletest_pareto (void){  return gsl_ran_pareto (r_global, 1.9, 2.75);}doubletest_pareto_pdf (double x){  return gsl_ran_pareto_pdf (x, 1.9, 2.75);}doubletest_rayleigh (void){  return gsl_ran_rayleigh (r_global, 1.9);}doubletest_rayleigh_pdf (double x){  return gsl_ran_rayleigh_pdf (x, 1.9);}doubletest_rayleigh_tail (void){  return gsl_ran_rayleigh_tail (r_global, 2.7, 1.9);}doubletest_rayleigh_tail_pdf (double x){  return gsl_ran_rayleigh_tail_pdf (x, 2.7, 1.9);}doubletest_poisson (void){  return gsl_ran_poisson (r_global, 5.0);}doubletest_poisson_pdf (unsigned int n){  return gsl_ran_poisson_pdf (n, 5.0);}doubletest_poisson_large (void){  return gsl_ran_poisson (r_global, 30.0);}doubletest_poisson_large_pdf (unsigned int n){  return gsl_ran_poisson_pdf (n, 30.0);}doubletest_tdist1 (void){  return gsl_ran_tdist (r_global, 1.75);}doubletest_tdist1_pdf (double x){  return gsl_ran_tdist_pdf (x, 1.75);}doubletest_tdist2 (void){  return gsl_ran_tdist (r_global, 12.75);}doubletest_tdist2_pdf (double x){  return gsl_ran_tdist_pdf (x, 12.75);}doubletest_laplace (void){  return gsl_ran_laplace (r_global, 2.75);}doubletest_laplace_pdf (double x){  return gsl_ran_laplace_pdf (x, 2.75);}doubletest_weibull (void){  return gsl_ran_weibull (r_global, 3.14, 2.75);}doubletest_weibull_pdf (double x){  return gsl_ran_weibull_pdf (x, 3.14, 2.75);}doubletest_weibull1 (void){  return gsl_ran_weibull (r_global, 2.97, 1.0);}doubletest_weibull1_pdf (double x){  return gsl_ran_weibull_pdf (x, 2.97, 1.0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -