⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
📖 第 1 页 / 共 3 页
字号:
/* randist/test.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <stdio.h>#include <stdlib.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_randist.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_test.h>#include <gsl/gsl_ieee_utils.h>#define N 100000/* Convient test dimension for multivariant distributions */#define MULTI_DIM 10void testMoments (double (*f) (void), const char *name,                  double a, double b, double p);void testPDF (double (*f) (void), double (*pdf) (double), const char *name);void testDiscretePDF (double (*f) (void), double (*pdf) (unsigned int),                      const char *name);void test_shuffle (void);void test_choose (void);double test_beta (void);double test_beta_pdf (double x);double test_bernoulli (void);double test_bernoulli_pdf (unsigned int n);double test_binomial (void);double test_binomial_pdf (unsigned int n);double test_binomial_large (void);double test_binomial_large_pdf (unsigned int n);double test_binomial_huge (void);double test_binomial_huge_pdf (unsigned int n);double test_binomial_tpe (void);double test_binomial_tpe_pdf (unsigned int n);double test_binomial_large_tpe (void);double test_binomial_large_tpe_pdf (unsigned int n);double test_binomial_huge_tpe (void);double test_binomial_huge_tpe_pdf (unsigned int n);double test_cauchy (void);double test_cauchy_pdf (double x);double test_chisq (void);double test_chisq_pdf (double x);double test_dirichlet (void);double test_dirichlet_pdf (double x);void test_dirichlet_moments (void);double test_discrete1 (void);double test_discrete1_pdf (unsigned int n);double test_discrete2 (void);double test_discrete2_pdf (unsigned int n);double test_discrete3 (void);double test_discrete3_pdf (unsigned int n);double test_erlang (void);double test_erlang_pdf (double x);double test_exponential (void);double test_exponential_pdf (double x);double test_exppow0 (void);double test_exppow0_pdf (double x);double test_exppow1 (void);double test_exppow1_pdf (double x);double test_exppow1a (void);double test_exppow1a_pdf (double x);double test_exppow2 (void);double test_exppow2_pdf (double x);double test_exppow2a (void);double test_exppow2a_pdf (double x);double test_fdist (void);double test_fdist_pdf (double x);double test_flat (void);double test_flat_pdf (double x);double test_gamma (void);double test_gamma_pdf (double x);double test_gamma1 (void);double test_gamma1_pdf (double x);double test_gamma_int (void);double test_gamma_int_pdf (double x);double test_gamma_large (void);double test_gamma_large_pdf (double x);double test_gaussian (void);double test_gaussian_pdf (double x);double test_gaussian_ratio_method (void);double test_gaussian_ratio_method_pdf (double x);double test_gaussian_tail (void);double test_gaussian_tail_pdf (double x);double test_gaussian_tail1 (void);double test_gaussian_tail1_pdf (double x);double test_gaussian_tail2 (void);double test_gaussian_tail2_pdf (double x);double test_ugaussian (void);double test_ugaussian_pdf (double x);double test_ugaussian_ratio_method (void);double test_ugaussian_ratio_method_pdf (double x);double test_ugaussian_tail (void);double test_ugaussian_tail_pdf (double x);double test_bivariate_gaussian1 (void);double test_bivariate_gaussian1_pdf (double x);double test_bivariate_gaussian2 (void);double test_bivariate_gaussian2_pdf (double x);double test_bivariate_gaussian3 (void);double test_bivariate_gaussian3_pdf (double x);double test_bivariate_gaussian4 (void);double test_bivariate_gaussian4_pdf (double x);double test_gumbel1 (void);double test_gumbel1_pdf (double x);double test_gumbel2 (void);double test_gumbel2_pdf (double x);double test_geometric (void);double test_geometric_pdf (unsigned int x);double test_geometric1 (void);double test_geometric1_pdf (unsigned int x);double test_hypergeometric1 (void);double test_hypergeometric1_pdf (unsigned int x);double test_hypergeometric2 (void);double test_hypergeometric2_pdf (unsigned int x);double test_hypergeometric3 (void);double test_hypergeometric3_pdf (unsigned int x);double test_hypergeometric4 (void);double test_hypergeometric4_pdf (unsigned int x);double test_hypergeometric5 (void);double test_hypergeometric5_pdf (unsigned int x);double test_hypergeometric6 (void);double test_hypergeometric6_pdf (unsigned int x);double test_landau (void);double test_landau_pdf (double x);double test_levy1 (void);double test_levy1_pdf (double x);double test_levy2 (void);double test_levy2_pdf (double x);double test_levy1a (void);double test_levy1a_pdf (double x);double test_levy2a (void);double test_levy2a_pdf (double x);double test_levy_skew1 (void);double test_levy_skew1_pdf (double x);double test_levy_skew2 (void);double test_levy_skew2_pdf (double x);double test_levy_skew1a (void);double test_levy_skew1a_pdf (double x);double test_levy_skew2a (void);double test_levy_skew2a_pdf (double x);double test_levy_skew1b (void);double test_levy_skew1b_pdf (double x);double test_levy_skew2b (void);double test_levy_skew2b_pdf (double x);double test_logistic (void);double test_logistic_pdf (double x);double test_lognormal (void);double test_lognormal_pdf (double x);double test_logarithmic (void);double test_logarithmic_pdf (unsigned int n);double test_multinomial (void);double test_multinomial_pdf (unsigned int n);double test_multinomial_large (void);double test_multinomial_large_pdf (unsigned int n);void test_multinomial_moments (void);double test_negative_binomial (void);double test_negative_binomial_pdf (unsigned int n);double test_pascal (void);double test_pascal_pdf (unsigned int n);double test_pareto (void);double test_pareto_pdf (double x);double test_poisson (void);double test_poisson_pdf (unsigned int x);double test_poisson_large (void);double test_poisson_large_pdf (unsigned int x);double test_dir2d (void);double test_dir2d_pdf (double x);double test_dir2d_trig_method (void);double test_dir2d_trig_method_pdf (double x);double test_dir3dxy (void);double test_dir3dxy_pdf (double x);double test_dir3dyz (void);double test_dir3dyz_pdf (double x);double test_dir3dzx (void);double test_dir3dzx_pdf (double x);double test_rayleigh (void);double test_rayleigh_pdf (double x);double test_rayleigh_tail (void);double test_rayleigh_tail_pdf (double x);double test_tdist1 (void);double test_tdist1_pdf (double x);double test_tdist2 (void);double test_tdist2_pdf (double x);double test_laplace (void);double test_laplace_pdf (double x);double test_weibull (void);double test_weibull_pdf (double x);double test_weibull1 (void);double test_weibull1_pdf (double x);gsl_rng *r_global;intmain (void){  gsl_ieee_env_setup ();  gsl_rng_env_setup ();  r_global = gsl_rng_alloc (gsl_rng_default);#define FUNC(x)  test_ ## x,                     "test gsl_ran_" #x#define FUNC2(x) test_ ## x, test_ ## x ## _pdf, "test gsl_ran_" #x  test_shuffle ();  test_choose ();  testMoments (FUNC (ugaussian), 0.0, 100.0, 0.5);  testMoments (FUNC (ugaussian), -1.0, 1.0, 0.6826895);  testMoments (FUNC (ugaussian), 3.0, 3.5, 0.0011172689);  testMoments (FUNC (ugaussian_tail), 3.0, 3.5, 0.0011172689 / 0.0013498981);  testMoments (FUNC (exponential), 0.0, 1.0, 1 - exp (-0.5));  testMoments (FUNC (cauchy), 0.0, 10000.0, 0.5);  testMoments (FUNC (discrete1), -0.5, 0.5, 0.59);  testMoments (FUNC (discrete1), 0.5, 1.5, 0.40);  testMoments (FUNC (discrete1), 1.5, 3.5, 0.01);  testMoments (FUNC (discrete2), -0.5,  0.5, 1.0/45.0 );  testMoments (FUNC (discrete2),  8.5,  9.5, 0 );    testMoments (FUNC (discrete3), -0.5, 0.5, 0.05 );  testMoments (FUNC (discrete3),  0.5, 1.5, 0.05 );  testMoments (FUNC (discrete3), -0.5, 9.5, 0.5 );  test_dirichlet_moments ();  test_multinomial_moments ();  testPDF (FUNC2 (beta));  testPDF (FUNC2 (cauchy));  testPDF (FUNC2 (chisq));  testPDF (FUNC2 (dirichlet));  testPDF (FUNC2 (erlang));  testPDF (FUNC2 (exponential));  testPDF (FUNC2 (exppow0));  testPDF (FUNC2 (exppow1));  testPDF (FUNC2 (exppow1a));  testPDF (FUNC2 (exppow2));  testPDF (FUNC2 (exppow2a));  testPDF (FUNC2 (fdist));  testPDF (FUNC2 (flat));  testPDF (FUNC2 (gamma));  testPDF (FUNC2 (gamma1));  testPDF (FUNC2 (gamma_int));  testPDF (FUNC2 (gamma_large));  testPDF (FUNC2 (gaussian));  testPDF (FUNC2 (gaussian_ratio_method));  testPDF (FUNC2 (ugaussian));  testPDF (FUNC2 (ugaussian_ratio_method));  testPDF (FUNC2 (gaussian_tail));  testPDF (FUNC2 (gaussian_tail1));  testPDF (FUNC2 (gaussian_tail2));  testPDF (FUNC2 (ugaussian_tail));  testPDF (FUNC2 (bivariate_gaussian1));  testPDF (FUNC2 (bivariate_gaussian2));  testPDF (FUNC2 (bivariate_gaussian3));  testPDF (FUNC2 (bivariate_gaussian4));  testPDF (FUNC2 (gumbel1));  testPDF (FUNC2 (gumbel2));  testPDF (FUNC2 (landau));  testPDF (FUNC2 (levy1));  testPDF (FUNC2 (levy2));  testPDF (FUNC2 (levy1a));  testPDF (FUNC2 (levy2a));  testPDF (FUNC2 (levy_skew1));  testPDF (FUNC2 (levy_skew2));  testPDF (FUNC2 (levy_skew1a));  testPDF (FUNC2 (levy_skew2a));  testPDF (FUNC2 (levy_skew1b));  testPDF (FUNC2 (levy_skew2b));  testPDF (FUNC2 (logistic));  testPDF (FUNC2 (lognormal));  testPDF (FUNC2 (pareto));  testPDF (FUNC2 (rayleigh));  testPDF (FUNC2 (rayleigh_tail));  testPDF (FUNC2 (tdist1));  testPDF (FUNC2 (tdist2));  testPDF (FUNC2 (laplace));  testPDF (FUNC2 (weibull));  testPDF (FUNC2 (weibull1));  testPDF (FUNC2 (dir2d));  testPDF (FUNC2 (dir2d_trig_method));  testPDF (FUNC2 (dir3dxy));  testPDF (FUNC2 (dir3dyz));  testPDF (FUNC2 (dir3dzx));  testDiscretePDF (FUNC2 (discrete1));  testDiscretePDF (FUNC2 (discrete2));  testDiscretePDF (FUNC2 (discrete3));  testDiscretePDF (FUNC2 (poisson));  testDiscretePDF (FUNC2 (poisson_large));  testDiscretePDF (FUNC2 (bernoulli));  testDiscretePDF (FUNC2 (binomial));  testDiscretePDF (FUNC2 (binomial_tpe));  testDiscretePDF (FUNC2 (binomial_large));  testDiscretePDF (FUNC2 (binomial_large_tpe));  testDiscretePDF (FUNC2 (binomial_huge));  testDiscretePDF (FUNC2 (binomial_huge_tpe));  testDiscretePDF (FUNC2 (geometric));  testDiscretePDF (FUNC2 (geometric1));  testDiscretePDF (FUNC2 (hypergeometric1));  testDiscretePDF (FUNC2 (hypergeometric2));  testDiscretePDF (FUNC2 (hypergeometric3));  testDiscretePDF (FUNC2 (hypergeometric4));  testDiscretePDF (FUNC2 (hypergeometric5));  testDiscretePDF (FUNC2 (hypergeometric6));  testDiscretePDF (FUNC2 (logarithmic));  testDiscretePDF (FUNC2 (multinomial));  testDiscretePDF (FUNC2 (multinomial_large));  testDiscretePDF (FUNC2 (negative_binomial));  testDiscretePDF (FUNC2 (pascal));  exit (gsl_test_summary ());}voidtest_shuffle (void){  double count[10][10];  int x[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };  int i, j, status = 0;  for (i = 0; i < 10; i++)    {      for (j = 0; j < 10; j++)        {          count[i][j] = 0;        }    }  for (i = 0; i < N; i++)    {      for (j = 0; j < 10; j++)        x[j] = j;      gsl_ran_shuffle (r_global, x, 10, sizeof (int));      for (j = 0; j < 10; j++)        count[x[j]][j]++;    }  for (i = 0; i < 10; i++)    {      for (j = 0; j < 10; j++)        {          double expected = N / 10.0;          double d = fabs (count[i][j] - expected);          double sigma = d / sqrt (expected);          if (sigma > 5 && d > 1)            {              status = 1;              gsl_test (status,                        "gsl_ran_shuffle %d,%d (%g observed vs %g expected)",                        i, j, count[i][j] / N, 0.1);            }        }    }  gsl_test (status, "gsl_ran_shuffle on {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}");}voidtest_choose (void){  double count[10];  int x[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };  int y[3] = { 0, 1, 2 };  int i, j, status = 0;  for (i = 0; i < 10; i++)    {      count[i] = 0;    }  for (i = 0; i < N; i++)    {      for (j = 0; j < 10; j++)        x[j] = j;      gsl_ran_choose (r_global, y, 3, x, 10, sizeof (int));      for (j = 0; j < 3; j++)        count[y[j]]++;    }  for (i = 0; i < 10; i++)    {      double expected = 3.0 * N / 10.0;      double d = fabs (count[i] - expected);      double sigma = d / sqrt (expected);      if (sigma > 5 && d > 1)        {          status = 1;          gsl_test (status,                    "gsl_ran_choose %d (%g observed vs %g expected)",                    i, count[i] / N, 0.1);        }    }  gsl_test (status, "gsl_ran_choose (3) on {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}");}voidtestMoments (double (*f) (void), const char *name,             double a, double b, double p){  int i;  double count = 0, expected, sigma;  int status;  for (i = 0; i < N; i++)    {      double r = f ();      if (r < b && r > a)        count++;    }  expected = p * N;  sigma = fabs (count - expected) / sqrt (expected);  status = (sigma > 3);  gsl_test (status, "%s [%g,%g] (%g observed vs %g expected)",            name, a, b, count / N, p);}#define BINS 100voidtestPDF (double (*f) (void), double (*pdf) (double), const char *name){  double count[BINS], p[BINS];  double a = -5.0, b = +5.0;  double dx = (b - a) / BINS;  int i, j, status = 0, status_i = 0;  for (i = 0; i < BINS; i++)    count[i] = 0;  for (i = 0; i < N; i++)    {      double r = f ();      if (r < b && r > a)        {          j = (int) ((r - a) / dx);          count[j]++;        }    }  for (i = 0; i < BINS; i++)    {      /* Compute an approximation to the integral of p(x) from x to         x+dx using Simpson's rule */      double x = a + i * dx;#define STEPS 100      double sum = 0;      if (fabs (x) < 1e-10)     /* hit the origin exactly */        x = 0.0;      for (j = 1; j < STEPS; j++)        sum += pdf (x + j * dx / STEPS);      p[i] = 0.5 * (pdf (x) + 2 * sum + pdf (x + dx - 1e-7)) * dx / STEPS;    }  for (i = 0; i < BINS; i++)    {      double x = a + i * dx;      double d = fabs (count[i] - N * p[i]);      if (p[i] != 0)        {          double s = d / sqrt (N * p[i]);          status_i = (s > 5) && (d > 1);        }      else        {          status_i = (count[i] != 0);        }      status |= status_i;      if (status_i)        gsl_test (status_i, "%s [%g,%g) (%g/%d=%g observed vs %g expected)",                  name, x, x + dx, count[i], N, count[i] / N, p[i]);    }  if (status == 0)    gsl_test (status, "%s, sampling against pdf over range [%g,%g) ",              name, a, b);}voidtestDiscretePDF (double (*f) (void), double (*pdf) (unsigned int),                 const char *name){  double count[BINS], p[BINS];  unsigned int i;  int status = 0, status_i = 0;  for (i = 0; i < BINS; i++)    count[i] = 0;  for (i = 0; i < N; i++)    {      int r = (int) (f ());      if (r >= 0 && r < BINS)        count[r]++;    }  for (i = 0; i < BINS; i++)    p[i] = pdf (i);  for (i = 0; i < BINS; i++)    {      double d = fabs (count[i] - N * p[i]);      if (p[i] != 0)        {          double s = d / sqrt (N * p[i]);          status_i = (s > 5) && (d > 1);        }      else        {          status_i = (count[i] != 0);        }      status |= status_i;      if (status_i)        gsl_test (status_i, "%s i=%d (%g observed vs %g expected)",                  name, i, count[i] / N, p[i]);    }  if (status == 0)    gsl_test (status, "%s, sampling against pdf over range [%d,%d) ",              name, 0, BINS);}doubletest_beta (void){  return gsl_ran_beta (r_global, 2.0, 3.0);}doubletest_beta_pdf (double x){  return gsl_ran_beta_pdf (x, 2.0, 3.0);}doubletest_bernoulli (void){  return gsl_ran_bernoulli (r_global, 0.3);}doubletest_bernoulli_pdf (unsigned int n){  return gsl_ran_bernoulli_pdf (n, 0.3);}doubletest_binomial (void){  return gsl_ran_binomial (r_global, 0.3, 5);}doubletest_binomial_pdf (unsigned int n){  return gsl_ran_binomial_pdf (n, 0.3, 5);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -