⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gauss.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* randist/gauss.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>/* Of the two methods provided below, I think the Polar method is more * efficient, but only when you are actually producing two random * deviates.  We don't produce two, because then we'd have to save one * in a static variable for the next call, and that would screws up * re-entrant or threaded code, so we only produce one.  This makes * the Ratio method suddenly more appealing.  There are further tests * one can make if the log() is slow.  See Knuth for details *//* Both methods pass the statistical tests; but the polar method * seems to be a touch faster on my home Pentium, EVEN though we * are only using half of the available random deviates! *//* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */doublegsl_ran_gaussian (const gsl_rng * r, const double sigma){  double x, y, r2;  do    {      /* choose x,y in uniform square (-1,-1) to (+1,+1) */      x = -1 + 2 * gsl_rng_uniform (r);      y = -1 + 2 * gsl_rng_uniform (r);      /* see if it is in the unit circle */      r2 = x * x + y * y;    }  while (r2 > 1.0 || r2 == 0);  /* Box-Muller transform */  return sigma * y * sqrt (-2.0 * log (r2) / r2);}/* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130 *//* K+M, ACM Trans Math Software 3 (1977) 257-260. */doublegsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma){  double u, v, x;  do    {      v = gsl_rng_uniform (r);      do        {          u = gsl_rng_uniform (r);        }      while (u == 0);      /* Const 1.715... = sqrt(8/e) */      x = 1.71552776992141359295 * (v - 0.5) / u;    }  while (x * x > -4.0 * log (u));  return sigma * x;}doublegsl_ran_gaussian_pdf (const double x, const double sigma){  double u = x / fabs (sigma);  double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);  return p;}doublegsl_ran_ugaussian (const gsl_rng * r){  return gsl_ran_gaussian (r, 1.0);}doublegsl_ran_ugaussian_ratio_method (const gsl_rng * r){  return gsl_ran_gaussian_ratio_method (r, 1.0);}doublegsl_ran_ugaussian_pdf (const double x){  return gsl_ran_gaussian_pdf (x, 1.0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -