⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gamma.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* randist/gamma.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>static double gamma_large (const gsl_rng * r, const double a);static double gamma_frac (const gsl_rng * r, const double a);/* The Gamma distribution of order a>0 is defined by:   p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx   for x>0.  If X and Y are independent gamma-distributed random   variables of order a1 and a2 with the same scale parameter b, then   X+Y has gamma distribution of order a1+a2.   The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */doublegsl_ran_gamma (const gsl_rng * r, const double a, const double b){  /* assume a > 0 */  unsigned int na = floor (a);  if (a == na)    {      return b * gsl_ran_gamma_int (r, na);    }  else if (na == 0)    {      return b * gamma_frac (r, a);    }  else    {      return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ;    }}doublegsl_ran_gamma_int (const gsl_rng * r, const unsigned int a){  if (a < 12)    {      unsigned int i;      double prod = 1;      for (i = 0; i < a; i++)        {          prod *= gsl_rng_uniform_pos (r);        }      /* Note: for 12 iterations we are safe against underflow, since         the smallest positive random number is O(2^-32). This means         the smallest possible product is 2^(-12*32) = 10^-116 which         is within the range of double precision. */      return -log (prod);    }  else    {      return gamma_large (r, (double) a);    }}static doublegamma_large (const gsl_rng * r, const double a){  /* Works only if a > 1, and is most efficient if a is large     This algorithm, reported in Knuth, is attributed to Ahrens.  A     faster one, we are told, can be found in: J. H. Ahrens and     U. Dieter, Computing 12 (1974) 223-246.  */  double sqa, x, y, v;  sqa = sqrt (2 * a - 1);  do    {      do        {          y = tan (M_PI * gsl_rng_uniform (r));          x = sqa * y + a - 1;        }      while (x <= 0);      v = gsl_rng_uniform (r);    }  while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y));  return x;}static doublegamma_frac (const gsl_rng * r, const double a){  /* This is exercise 16 from Knuth; see page 135, and the solution is     on page 551.  */  double p, q, x, u, v;  p = M_E / (a + M_E);  do    {      u = gsl_rng_uniform (r);      v = gsl_rng_uniform_pos (r);      if (u < p)        {          x = exp ((1 / a) * log (v));          q = exp (-x);        }      else        {          x = 1 - log (v);          q = exp ((a - 1) * log (x));        }    }  while (gsl_rng_uniform (r) >= q);  return x;}doublegsl_ran_gamma_pdf (const double x, const double a, const double b){  if (x < 0)    {      return 0 ;    }  else if (x == 0)    {      if (a == 1)        return 1/b ;      else        return 0 ;    }  else if (a == 1)    {      return exp(-x/b)/b ;    }  else     {      double p;      double lngamma = gsl_sf_lngamma (a);      p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b;      return p;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -