📄 gamma.c
字号:
/* randist/gamma.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>static double gamma_large (const gsl_rng * r, const double a);static double gamma_frac (const gsl_rng * r, const double a);/* The Gamma distribution of order a>0 is defined by: p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx for x>0. If X and Y are independent gamma-distributed random variables of order a1 and a2 with the same scale parameter b, then X+Y has gamma distribution of order a1+a2. The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */doublegsl_ran_gamma (const gsl_rng * r, const double a, const double b){ /* assume a > 0 */ unsigned int na = floor (a); if (a == na) { return b * gsl_ran_gamma_int (r, na); } else if (na == 0) { return b * gamma_frac (r, a); } else { return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ; }}doublegsl_ran_gamma_int (const gsl_rng * r, const unsigned int a){ if (a < 12) { unsigned int i; double prod = 1; for (i = 0; i < a; i++) { prod *= gsl_rng_uniform_pos (r); } /* Note: for 12 iterations we are safe against underflow, since the smallest positive random number is O(2^-32). This means the smallest possible product is 2^(-12*32) = 10^-116 which is within the range of double precision. */ return -log (prod); } else { return gamma_large (r, (double) a); }}static doublegamma_large (const gsl_rng * r, const double a){ /* Works only if a > 1, and is most efficient if a is large This algorithm, reported in Knuth, is attributed to Ahrens. A faster one, we are told, can be found in: J. H. Ahrens and U. Dieter, Computing 12 (1974) 223-246. */ double sqa, x, y, v; sqa = sqrt (2 * a - 1); do { do { y = tan (M_PI * gsl_rng_uniform (r)); x = sqa * y + a - 1; } while (x <= 0); v = gsl_rng_uniform (r); } while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y)); return x;}static doublegamma_frac (const gsl_rng * r, const double a){ /* This is exercise 16 from Knuth; see page 135, and the solution is on page 551. */ double p, q, x, u, v; p = M_E / (a + M_E); do { u = gsl_rng_uniform (r); v = gsl_rng_uniform_pos (r); if (u < p) { x = exp ((1 / a) * log (v)); q = exp (-x); } else { x = 1 - log (v); q = exp ((a - 1) * log (x)); } } while (gsl_rng_uniform (r) >= q); return x;}doublegsl_ran_gamma_pdf (const double x, const double a, const double b){ if (x < 0) { return 0 ; } else if (x == 0) { if (a == 1) return 1/b ; else return 0 ; } else if (a == 1) { return exp(-x/b)/b ; } else { double p; double lngamma = gsl_sf_lngamma (a); p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b; return p; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -