📄 nbinomial.c
字号:
/* randist/nbinomial.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>#include <gsl/gsl_sf_gamma.h>/* The negative binomial distribution has the form, prob(k) = Gamma(n + k)/(Gamma(n) Gamma(k + 1)) p^n (1-p)^k for k = 0, 1, ... . Note that n does not have to be an integer. This is the Leger's algorithm (given in the answers in Knuth) */unsigned intgsl_ran_negative_binomial (const gsl_rng * r, double p, double n){ double X = gsl_ran_gamma (r, n, 1.0) ; unsigned int k = gsl_ran_poisson (r, X*(1-p)/p) ; return k ;}doublegsl_ran_negative_binomial_pdf (const unsigned int k, const double p, double n){ double P; double f = gsl_sf_lngamma (k + n) ; double a = gsl_sf_lngamma (n) ; double b = gsl_sf_lngamma (k + 1.0) ; P = exp(f-a-b) * pow (p, n) * pow (1 - p, (double)k); return P;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -