⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linear.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* fit/linear.c *  * Copyright (C) 2000 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <config.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_fit.h>/* Fit the data (x_i, y_i) to the linear relationship    Y = c0 + c1 x   returning,    c0, c1  --  coefficients   cov00, cov01, cov11  --  variance-covariance matrix of c0 and c1,   sumsq   --   sum of squares of residuals    This fit can be used in the case where the errors for the data are   uknown, but assumed equal for all points. The resulting   variance-covariance matrix estimates the error in the coefficients   from the observed variance of the points around the best fit line.*/intgsl_fit_linear (const double *x, const size_t xstride,                const double *y, const size_t ystride,                const size_t n,                double *c0, double *c1,                double *cov_00, double *cov_01, double *cov_11, double *sumsq){  double m_x = 0, m_y = 0, m_dx2 = 0, m_dxdy = 0;  size_t i;  for (i = 0; i < n; i++)    {      m_x += (x[i * xstride] - m_x) / (i + 1.0);      m_y += (y[i * ystride] - m_y) / (i + 1.0);    }  for (i = 0; i < n; i++)    {      const double dx = x[i * xstride] - m_x;      const double dy = y[i * ystride] - m_y;      m_dx2 += (dx * dx - m_dx2) / (i + 1.0);      m_dxdy += (dx * dy - m_dxdy) / (i + 1.0);    }  /* In terms of y = a + b x */  {    double s2 = 0, d2 = 0;    double b = m_dxdy / m_dx2;    double a = m_y - m_x * b;    *c0 = a;    *c1 = b;    /* Compute chi^2 = \sum (y_i - (a + b * x_i))^2 */    for (i = 0; i < n; i++)      {        const double dx = x[i * xstride] - m_x;        const double dy = y[i * ystride] - m_y;        const double d = dy - b * dx;        d2 += d * d;      }    s2 = d2 / (n - 2.0);        /* chisq per degree of freedom */    *cov_00 = s2 * (1.0 / n) * (1 + m_x * m_x / m_dx2);    *cov_11 = s2 * 1.0 / (n * m_dx2);    *cov_01 = s2 * (-m_x) / (n * m_dx2);    *sumsq = d2;  }  return GSL_SUCCESS;}/* Fit the weighted data (x_i, w_i, y_i) to the linear relationship    Y = c0 + c1 x   returning,    c0, c1  --  coefficients   s0, s1  --  the standard deviations of c0 and c1,   r       --  the correlation coefficient between c0 and c1,   chisq   --  weighted sum of squares of residuals */intgsl_fit_wlinear (const double *x, const size_t xstride,                 const double *w, const size_t wstride,                 const double *y, const size_t ystride,                 const size_t n,                 double *c0, double *c1,                 double *cov_00, double *cov_01, double *cov_11,                 double *chisq){  /* compute the weighted means and weighted deviations from the means */  /* wm denotes a "weighted mean", wm(f) = (sum_i w_i f_i) / (sum_i w_i) */  double W = 0, wm_x = 0, wm_y = 0, wm_dx2 = 0, wm_dxdy = 0;  size_t i;  for (i = 0; i < n; i++)    {      const double wi = w[i * wstride];      if (wi > 0)        {          W += wi;          wm_x += (x[i * xstride] - wm_x) * (wi / W);          wm_y += (y[i * ystride] - wm_y) * (wi / W);        }    }  W = 0;                        /* reset the total weight */  for (i = 0; i < n; i++)    {      const double wi = w[i * wstride];      if (wi > 0)        {          const double dx = x[i * xstride] - wm_x;          const double dy = y[i * ystride] - wm_y;          W += wi;          wm_dx2 += (dx * dx - wm_dx2) * (wi / W);          wm_dxdy += (dx * dy - wm_dxdy) * (wi / W);        }    }  /* In terms of y = a + b x */  {    double d2 = 0;    double b = wm_dxdy / wm_dx2;    double a = wm_y - wm_x * b;    *c0 = a;    *c1 = b;    *cov_00 = (1 / W) * (1 + wm_x * wm_x / wm_dx2);    *cov_11 = 1 / (W * wm_dx2);    *cov_01 = -wm_x / (W * wm_dx2);    /* Compute chi^2 = \sum w_i (y_i - (a + b * x_i))^2 */    for (i = 0; i < n; i++)      {        const double wi = w[i * wstride];        if (wi > 0)          {            const double dx = x[i * xstride] - wm_x;            const double dy = y[i * ystride] - wm_y;            const double d = dy - b * dx;            d2 += wi * d * d;          }      }    *chisq = d2;  }  return GSL_SUCCESS;}intgsl_fit_linear_est (const double x,                    const double c0, const double c1,                    const double c00, const double c01, const double c11,                    double *y, double *y_err){  *y = c0 + c1 * x;  *y_err = sqrt (c00 + x * (2 * c01 + c11 * x));  return GSL_SUCCESS;}intgsl_fit_mul (const double *x, const size_t xstride,             const double *y, const size_t ystride,             const size_t n,              double *c1, double *cov_11, double *sumsq){  double m_x = 0, m_y = 0, m_dx2 = 0, m_dxdy = 0;  size_t i;  for (i = 0; i < n; i++)    {      m_x += (x[i * xstride] - m_x) / (i + 1.0);      m_y += (y[i * ystride] - m_y) / (i + 1.0);    }  for (i = 0; i < n; i++)    {      const double dx = x[i * xstride] - m_x;      const double dy = y[i * ystride] - m_y;      m_dx2 += (dx * dx - m_dx2) / (i + 1.0);      m_dxdy += (dx * dy - m_dxdy) / (i + 1.0);    }  /* In terms of y =  b x */  {    double s2 = 0, d2 = 0;    double b = (m_x * m_y + m_dxdy) / (m_x * m_x + m_dx2);    *c1 = b;    /* Compute chi^2 = \sum (y_i -  b * x_i)^2 */    for (i = 0; i < n; i++)      {        const double dx = x[i * xstride] - m_x;        const double dy = y[i * ystride] - m_y;        const double d = (m_y - b * m_x) + dy - b * dx;        d2 += d * d;      }    s2 = d2 / (n - 1.0);        /* chisq per degree of freedom */    *cov_11 = s2 * 1.0 / (n * (m_x * m_x + m_dx2));    *sumsq = d2;  }  return GSL_SUCCESS;}intgsl_fit_wmul (const double *x, const size_t xstride,              const double *w, const size_t wstride,              const double *y, const size_t ystride,              const size_t n,               double *c1, double *cov_11, double *chisq){  /* compute the weighted means and weighted deviations from the means */  /* wm denotes a "weighted mean", wm(f) = (sum_i w_i f_i) / (sum_i w_i) */  double W = 0, wm_x = 0, wm_y = 0, wm_dx2 = 0, wm_dxdy = 0;  size_t i;  for (i = 0; i < n; i++)    {      const double wi = w[i * wstride];      if (wi > 0)        {          W += wi;          wm_x += (x[i * xstride] - wm_x) * (wi / W);          wm_y += (y[i * ystride] - wm_y) * (wi / W);        }    }  W = 0;                        /* reset the total weight */  for (i = 0; i < n; i++)    {      const double wi = w[i * wstride];      if (wi > 0)        {          const double dx = x[i * xstride] - wm_x;          const double dy = y[i * ystride] - wm_y;          W += wi;          wm_dx2 += (dx * dx - wm_dx2) * (wi / W);          wm_dxdy += (dx * dy - wm_dxdy) * (wi / W);        }    }  /* In terms of y = b x */  {    double d2 = 0;    double b = (wm_x * wm_y + wm_dxdy) / (wm_x * wm_x + wm_dx2);    *c1 = b;    *cov_11 = 1 / (W * (wm_x * wm_x + wm_dx2));    /* Compute chi^2 = \sum w_i (y_i - b * x_i)^2 */    for (i = 0; i < n; i++)      {        const double wi = w[i * wstride];        if (wi > 0)          {            const double dx = x[i * xstride] - wm_x;            const double dy = y[i * ystride] - wm_y;            const double d = (wm_y - b * wm_x) + (dy - b * dx);            d2 += wi * d * d;          }      }    *chisq = d2;  }  return GSL_SUCCESS;}intgsl_fit_mul_est (const double x,                  const double c1, const double c11,                  double *y, double *y_err){  *y = c1 * x;  *y_err = sqrt (c11) * fabs (x);  return GSL_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -