⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 niederreiter-2.c

📁 该文件为c++的数学函数库!是一个非常有用的编程工具.它含有各种数学函数,为科学计算、工程应用等程序编写提供方便!
💻 C
字号:
/* Author: G. Jungman *//* Implement Niederreiter base 2 generator. * See: *   Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992) */#include <config.h>#include <gsl/gsl_qrng.h>#define NIED2_CHARACTERISTIC 2#define NIED2_BASE 2#define NIED2_MAX_DIMENSION 12#define NIED2_MAX_PRIM_DEGREE 5#define NIED2_MAX_DEGREE 50#define NIED2_BIT_COUNT 30#define NIED2_NBITS (NIED2_BIT_COUNT+1)#define MAXV (NIED2_NBITS + NIED2_MAX_DEGREE)/* Z_2 field operations */#define NIED2_ADD(x,y) (((x)+(y))%2)#define NIED2_MUL(x,y) (((x)*(y))%2)#define NIED2_SUB(x,y) NIED2_ADD((x),(y))static size_t nied2_state_size(unsigned int dimension);static int nied2_init(void * state, unsigned int dimension);static int nied2_get(void * state, unsigned int dimension, double * v);static const gsl_qrng_type nied2_type = {  "niederreiter-base-2",  NIED2_MAX_DIMENSION,  nied2_state_size,  nied2_init,  nied2_get};const gsl_qrng_type * gsl_qrng_niederreiter_2 = &nied2_type;/* primitive polynomials in binary encoding */static const int primitive_poly[NIED2_MAX_DIMENSION+1][NIED2_MAX_PRIM_DEGREE+1] ={  { 1, 0, 0, 0, 0, 0 },  /*  1               */  { 0, 1, 0, 0, 0, 0 },  /*  x               */  { 1, 1, 0, 0, 0, 0 },  /*  1 + x           */  { 1, 1, 1, 0, 0, 0 },  /*  1 + x + x^2     */  { 1, 1, 0, 1, 0, 0 },  /*  1 + x + x^3     */  { 1, 0, 1, 1, 0, 0 },  /*  1 + x^2 + x^3   */  { 1, 1, 0, 0, 1, 0 },  /*  1 + x + x^4     */  { 1, 0, 0, 1, 1, 0 },  /*  1 + x^3 + x^4   */  { 1, 1, 1, 1, 1, 0 },  /*  1 + x + x^2 + x^3 + x^4   */  { 1, 0, 1, 0, 0, 1 },  /*  1 + x^2 + x^5             */  { 1, 0, 0, 1, 0, 1 },  /*  1 + x^3 + x^5             */  { 1, 1, 1, 1, 0, 1 },  /*  1 + x + x^2 + x^3 + x^5   */  { 1, 1, 1, 0, 1, 1 }   /*  1 + x + x^2 + x^4 + x^5   */};/* degrees of primitive polynomials */static const int poly_degree[NIED2_MAX_DIMENSION+1] ={  0, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5};typedef struct{  unsigned int sequence_count;  int cj[NIED2_NBITS][NIED2_MAX_DIMENSION];  int nextq[NIED2_MAX_DIMENSION];} nied2_state_t;static size_t nied2_state_size(unsigned int dimension){  return sizeof(nied2_state_t);}/* Multiply polynomials over Z_2. * Notice use of a temporary vector, * side-stepping aliasing issues when * one of inputs is the same as the output * [especially important in the original fortran version, I guess]. */static void poly_multiply(  const int pa[], int pa_degree,  const int pb[], int pb_degree,  int pc[], int  * pc_degree  ){  int j, k;  int pt[NIED2_MAX_DEGREE+1];  int pt_degree = pa_degree + pb_degree;  for(k=0; k<=pt_degree; k++) {    int term = 0;    for(j=0; j<=k; j++) {      const int conv_term = NIED2_MUL(pa[k-j], pb[j]);      term = NIED2_ADD(term, conv_term);    }    pt[k] = term;  }  for(k=0; k<=pt_degree; k++) {    pc[k] = pt[k];  }  for(k=pt_degree+1; k<=NIED2_MAX_DEGREE; k++) {    pc[k] = 0;  }  *pc_degree = pt_degree;}/* Calculate the values of the constants V(J,R) as * described in BFN section 3.3. * *   px = appropriate irreducible polynomial for current dimension *   pb = polynomial defined in section 2.3 of BFN. * pb is modified */static void calculate_v(  const int px[], int px_degree,  int pb[], int * pb_degree,  int v[], int maxv  ){  const int nonzero_element = 1;    /* nonzero element of Z_2  */  const int arbitrary_element = 1;  /* arbitray element of Z_2 */  /* The polynomial ph is px**(J-1), which is the value of B on arrival.   * In section 3.3, the values of Hi are defined with a minus sign:   * don't forget this if you use them later !   */  int ph[NIED2_MAX_DEGREE+1];  /* int ph_degree = *pb_degree; */  int bigm = *pb_degree;      /* m from section 3.3 */  int m;                      /* m from section 2.3 */  int r, k, kj;  for(k=0; k<=NIED2_MAX_DEGREE; k++) {    ph[k] = pb[k];  }  /* Now multiply B by PX so B becomes PX**J.   * In section 2.3, the values of Bi are defined with a minus sign :   * don't forget this if you use them later !   */   poly_multiply(px, px_degree, pb, *pb_degree, pb, pb_degree);   m = *pb_degree;  /* Now choose a value of Kj as defined in section 3.3.   * We must have 0 <= Kj < E*J = M.   * The limit condition on Kj does not seem very relevant   * in this program.   */  /* Quoting from BFN: "Our program currently sets each K_q   * equal to eq. This has the effect of setting all unrestricted   * values of v to 1."   * Actually, it sets them to the arbitrary chosen value.   * Whatever.   */  kj = bigm;  /* Now choose values of V in accordance with   * the conditions in section 3.3.   */  for(r=0; r<kj; r++) {    v[r] = 0;  }  v[kj] = 1;  if(kj >= bigm) {    for(r=kj+1; r<m; r++) {      v[r] = arbitrary_element;    }  }  else {    /* This block is never reached. */    int term = NIED2_SUB(0, ph[kj]);    for(r=kj+1; r<bigm; r++) {      v[r] = arbitrary_element;      /* Check the condition of section 3.3,       * remembering that the H's have the opposite sign.  [????????]       */      term = NIED2_SUB(term, NIED2_MUL(ph[r], v[r]));    }    /* Now v[bigm] != term. */    v[bigm] = NIED2_ADD(nonzero_element, term);    for(r=bigm+1; r<m; r++) {      v[r] = arbitrary_element;    }  }  /* Calculate the remaining V's using the recursion of section 2.3,   * remembering that the B's have the opposite sign.   */  for(r=0; r<=maxv-m; r++) {    int term = 0;    for(k=0; k<m; k++) {      term = NIED2_SUB(term, NIED2_MUL(pb[k], v[r+k]));    }    v[r+m] = term;  }}static void calculate_cj(nied2_state_t * ns, unsigned int dimension){  int ci[NIED2_NBITS][NIED2_NBITS];  int v[MAXV+1];  int r;  unsigned int i_dim;  for(i_dim=0; i_dim<dimension; i_dim++) {    const int poly_index = i_dim + 1;    int j, k;    /* Niederreiter (page 56, after equation (7), defines two     * variables Q and U.  We do not need Q explicitly, but we     * do need U.     */    int u = 0;    /* For each dimension, we need to calculate powers of an     * appropriate irreducible polynomial, see Niederreiter     * page 65, just below equation (19).     * Copy the appropriate irreducible polynomial into PX,     * and its degree into E.  Set polynomial B = PX ** 0 = 1.     * M is the degree of B.  Subsequently B will hold higher     * powers of PX.     */    int pb[NIED2_MAX_DEGREE+1];    int px[NIED2_MAX_DEGREE+1];    int px_degree = poly_degree[poly_index];    int pb_degree = 0;    for(k=0; k<=px_degree; k++) {      px[k] = primitive_poly[poly_index][k];      pb[k] = 0;    }    for (;k<NIED2_MAX_DEGREE+1;k++) {      px[k] = 0;      pb[k] = 0;    }    pb[0] = 1;    for(j=0; j<NIED2_NBITS; j++) {      /* If U = 0, we need to set B to the next power of PX       * and recalculate V.       */      if(u == 0) calculate_v(px, px_degree, pb, &pb_degree, v, MAXV);      /* Now C is obtained from V.  Niederreiter       * obtains A from V (page 65, near the bottom), and then gets       * C from A (page 56, equation (7)).  However this can be done       * in one step.  Here CI(J,R) corresponds to       * Niederreiter's C(I,J,R).       */      for(r=0; r<NIED2_NBITS; r++) {        ci[r][j] = v[r+u];      }      /* Advance Niederreiter's state variables. */      ++u;      if(u == px_degree) u = 0;    }    /* The array CI now holds the values of C(I,J,R) for this value     * of I.  We pack them into array CJ so that CJ(I,R) holds all     * the values of C(I,J,R) for J from 1 to NBITS.     */    for(r=0; r<NIED2_NBITS; r++) {      int term = 0;      for(j=0; j<NIED2_NBITS; j++) {        term = 2*term + ci[r][j];      }      ns->cj[r][i_dim] = term;    }  }}static int nied2_init(void * state, unsigned int dimension){  nied2_state_t * n_state = (nied2_state_t *) state;  unsigned int i_dim;  if(dimension < 1 || dimension > NIED2_MAX_DIMENSION) return GSL_EINVAL;  calculate_cj(n_state, dimension);  for(i_dim=0; i_dim<dimension; i_dim++) n_state->nextq[i_dim] = 0;  n_state->sequence_count = 0;  return GSL_SUCCESS;}static int nied2_get(void * state, unsigned int dimension, double * v){  static const double recip = 1.0/(double)(1U << NIED2_NBITS); /* 2^(-nbits) */  nied2_state_t * n_state = (nied2_state_t *) state;  int r;  int c;  unsigned int i_dim;  /* Load the result from the saved state. */  for(i_dim=0; i_dim<dimension; i_dim++) {    v[i_dim] = n_state->nextq[i_dim] * recip;  }  /* Find the position of the least-significant zero in sequence_count.   * This is the bit that changes in the Gray-code representation as   * the count is advanced.   */  r = 0;  c = n_state->sequence_count;  while(1) {    if((c % 2) == 1) {      ++r;      c /= 2;    }    else break;  }  if(r >= NIED2_NBITS) return GSL_EFAILED; /* FIXME: better error code here */  /* Calculate the next state. */  for(i_dim=0; i_dim<dimension; i_dim++) {    n_state->nextq[i_dim] ^= n_state->cj[r][i_dim];  }  n_state->sequence_count++;  return GSL_SUCCESS;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -