📄 qregion_unix.cpp
字号:
{ register int x1; register int x2; register QRect *pNextRect; pNextRect = dest.rects.data() + dest.numRects; while (r1 != r1End && r2 != r2End) { x1 = qMax(r1->left(), r2->left()); x2 = qMin(r1->right(), r2->right()); /* * If there's any overlap between the two rectangles, add that * overlap to the new region. * There's no need to check for subsumption because the only way * such a need could arise is if some region has two rectangles * right next to each other. Since that should never happen... */ if (x1 <= x2) { Q_ASSERT(y1 <= y2); MEMCHECK(dest, pNextRect, dest.rects) pNextRect->setCoords(x1, y1, x2, y2); ++dest.numRects; ++pNextRect; } /* * Need to advance the pointers. Shift the one that extends * to the right the least, since the other still has a chance to * overlap with that region's next rectangle, if you see what I mean. */ if (r1->right() < r2->right()) { ++r1; } else if (r2->right() < r1->right()) { ++r2; } else { ++r1; ++r2; } }}/*====================================================================== * Generic Region Operator *====================================================================*//*- *----------------------------------------------------------------------- * miCoalesce -- * Attempt to merge the boxes in the current band with those in the * previous one. Used only by miRegionOp. * * Results: * The new index for the previous band. * * Side Effects: * If coalescing takes place: * - rectangles in the previous band will have their y2 fields * altered. * - dest.numRects will be decreased. * *----------------------------------------------------------------------- */static int miCoalesce(register QRegionPrivate &dest, int prevStart, int curStart){ register QRect *pPrevBox; /* Current box in previous band */ register QRect *pCurBox; /* Current box in current band */ register QRect *pRegEnd; /* End of region */ int curNumRects; /* Number of rectangles in current band */ int prevNumRects; /* Number of rectangles in previous band */ int bandY1; /* Y1 coordinate for current band */ QRect *rData = dest.rects.data(); pRegEnd = rData + dest.numRects; pPrevBox = rData + prevStart; prevNumRects = curStart - prevStart; /* * Figure out how many rectangles are in the current band. Have to do * this because multiple bands could have been added in miRegionOp * at the end when one region has been exhausted. */ pCurBox = rData + curStart; bandY1 = pCurBox->top(); for (curNumRects = 0; pCurBox != pRegEnd && pCurBox->top() == bandY1; ++curNumRects) { ++pCurBox; } if (pCurBox != pRegEnd) { /* * If more than one band was added, we have to find the start * of the last band added so the next coalescing job can start * at the right place... (given when multiple bands are added, * this may be pointless -- see above). */ --pRegEnd; while ((pRegEnd - 1)->top() == pRegEnd->top()) --pRegEnd; curStart = pRegEnd - rData; pRegEnd = rData + dest.numRects; } if (curNumRects == prevNumRects && curNumRects != 0) { pCurBox -= curNumRects; /* * The bands may only be coalesced if the bottom of the previous * matches the top scanline of the current. */ if (pPrevBox->bottom() == pCurBox->top() - 1) { /* * Make sure the bands have boxes in the same places. This * assumes that boxes have been added in such a way that they * cover the most area possible. I.e. two boxes in a band must * have some horizontal space between them. */ do { if (pPrevBox->left() != pCurBox->left() || pPrevBox->right() != pCurBox->right()) { // The bands don't line up so they can't be coalesced. return curStart; } ++pPrevBox; ++pCurBox; --prevNumRects; } while (prevNumRects != 0); dest.numRects -= curNumRects; pCurBox -= curNumRects; pPrevBox -= curNumRects; /* * The bands may be merged, so set the bottom y of each box * in the previous band to that of the corresponding box in * the current band. */ do { pPrevBox->setBottom(pCurBox->bottom()); ++pPrevBox; ++pCurBox; curNumRects -= 1; } while (curNumRects != 0); /* * If only one band was added to the region, we have to backup * curStart to the start of the previous band. * * If more than one band was added to the region, copy the * other bands down. The assumption here is that the other bands * came from the same region as the current one and no further * coalescing can be done on them since it's all been done * already... curStart is already in the right place. */ if (pCurBox == pRegEnd) { curStart = prevStart; } else { do { *pPrevBox++ = *pCurBox++; } while (pCurBox != pRegEnd); } } } return curStart;}/*- *----------------------------------------------------------------------- * miRegionOp -- * Apply an operation to two regions. Called by miUnion, miInverse, * miSubtract, miIntersect... * * Results: * None. * * Side Effects: * The new region is overwritten. * * Notes: * The idea behind this function is to view the two regions as sets. * Together they cover a rectangle of area that this function divides * into horizontal bands where points are covered only by one region * or by both. For the first case, the nonOverlapFunc is called with * each the band and the band's upper and lower extents. For the * second, the overlapFunc is called to process the entire band. It * is responsible for clipping the rectangles in the band, though * this function provides the boundaries. * At the end of each band, the new region is coalesced, if possible, * to reduce the number of rectangles in the region. * *----------------------------------------------------------------------- */static void miRegionOp(register QRegionPrivate &dest, const QRegionPrivate *reg1, const QRegionPrivate *reg2, OverlapFunc overlapFunc, NonOverlapFunc nonOverlap1Func, NonOverlapFunc nonOverlap2Func){ register const QRect *r1; // Pointer into first region register const QRect *r2; // Pointer into 2d region const QRect *r1End; // End of 1st region const QRect *r2End; // End of 2d region register int ybot; // Bottom of intersection register int ytop; // Top of intersection int prevBand; // Index of start of previous band in dest int curBand; // Index of start of current band in dest register const QRect *r1BandEnd; // End of current band in r1 register const QRect *r2BandEnd; // End of current band in r2 int top; // Top of non-overlapping band int bot; // Bottom of non-overlapping band /* * Initialization: * set r1, r2, r1End and r2End appropriately, preserve the important * parts of the destination region until the end in case it's one of * the two source regions, then mark the "new" region empty, allocating * another array of rectangles for it to use. */ r1 = reg1->rects.data(); r2 = reg2->rects.data(); r1End = r1 + reg1->numRects; r2End = r2 + reg2->numRects; QVector<QRect> oldRects = dest.rects; dest.numRects = 0; /* * Allocate a reasonable number of rectangles for the new region. The idea * is to allocate enough so the individual functions don't need to * reallocate and copy the array, which is time consuming, yet we don't * have to worry about using too much memory. I hope to be able to * nuke the realloc() at the end of this function eventually. */ dest.rects.resize(qMax(reg1->numRects,reg2->numRects) * 2); /* * Initialize ybot and ytop. * In the upcoming loop, ybot and ytop serve different functions depending * on whether the band being handled is an overlapping or non-overlapping * band. * In the case of a non-overlapping band (only one of the regions * has points in the band), ybot is the bottom of the most recent * intersection and thus clips the top of the rectangles in that band. * ytop is the top of the next intersection between the two regions and * serves to clip the bottom of the rectangles in the current band. * For an overlapping band (where the two regions intersect), ytop clips * the top of the rectangles of both regions and ybot clips the bottoms. */ if (reg1->extents.top() < reg2->extents.top()) ybot = reg1->extents.top() - 1; else ybot = reg2->extents.top() - 1; /* * prevBand serves to mark the start of the previous band so rectangles * can be coalesced into larger rectangles. qv. miCoalesce, above. * In the beginning, there is no previous band, so prevBand == curBand * (curBand is set later on, of course, but the first band will always * start at index 0). prevBand and curBand must be indices because of * the possible expansion, and resultant moving, of the new region's * array of rectangles. */ prevBand = 0; do { curBand = dest.numRects; /* * This algorithm proceeds one source-band (as opposed to a * destination band, which is determined by where the two regions * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the * rectangle after the last one in the current band for their * respective regions. */ r1BandEnd = r1; while (r1BandEnd != r1End && r1BandEnd->top() == r1->top()) ++r1BandEnd; r2BandEnd = r2; while (r2BandEnd != r2End && r2BandEnd->top() == r2->top()) ++r2BandEnd; /* * First handle the band that doesn't intersect, if any. * * Note that attention is restricted to one band in the * non-intersecting region at once, so if a region has n * bands between the current position and the next place it overlaps * the other, this entire loop will be passed through n times. */ if (r1->top() < r2->top()) { top = qMax(r1->top(), ybot + 1); bot = qMin(r1->bottom(), r2->top() - 1); if (nonOverlap1Func != 0 && bot >= top) (*nonOverlap1Func)(dest, r1, r1BandEnd, top, bot); ytop = r2->top(); } else if (r2->top() < r1->top()) { top = qMax(r2->top(), ybot + 1); bot = qMin(r2->bottom(), r1->top() - 1); if (nonOverlap2Func != 0 && bot >= top) (*nonOverlap2Func)(dest, r2, r2BandEnd, top, bot); ytop = r1->top(); } else { ytop = r1->top(); } /* * If any rectangles got added to the region, try and coalesce them * with rectangles from the previous band. Note we could just do * this test in miCoalesce, but some machines incur a not * inconsiderable cost for function calls, so... */ if (dest.numRects != curBand) prevBand = miCoalesce(dest, prevBand, curBand); /* * Now see if we've hit an intersecting band. The two bands only * intersect if ybot >= ytop */ ybot = qMin(r1->bottom(), r2->bottom()); curBand = dest.numRects; if (ybot >= ytop) (*overlapFunc)(dest, r1, r1BandEnd, r2, r2BandEnd, ytop, ybot); if (dest.numRects != curBand) prevBand = miCoalesce(dest, prevBand, curBand); /* * If we've finished with a band (y2 == ybot) we skip forward * in the region to the next band. */ if (r1->bottom() == ybot) r1 = r1BandEnd; if (r2->bottom() == ybot) r2 = r2BandEnd; } while (r1 != r1End && r2 != r2End); /* * Deal with whichever region still has rectangles left. */ curBand = dest.numRects; if (r1 != r1End) { if (nonOverlap1Func != 0) { do { r1BandEnd = r1; while (r1BandEnd < r1End && r1BandEnd->top() == r1->top()) ++r1BandEnd; (*nonOverlap1Func)(dest, r1, r1BandEnd, qMax(r1->top(), ybot + 1), r1->bottom()); r1 = r1BandEnd; } while (r1 != r1End); } } else if ((r2 != r2End) && (nonOverlap2Func != 0)) { do { r2BandEnd = r2; while (r2BandEnd < r2End && r2BandEnd->top() == r2->top()) ++r2BandEnd; (*nonOverlap2Func)(dest, r2, r2BandEnd, qMax(r2->top(), ybot + 1), r2->bottom()); r2 = r2BandEnd; } while (r2 != r2End); } if (dest.numRects != curBand) (void)miCoalesce(dest, prevBand, curBand); /* * A bit of cleanup. To keep regions from growing without bound, * we shrink the array of rectangles to match the new number of * rectangles in the region. * * Only do this stuff if the number of rectangles allocated is more than * twice the number of rectangles in the region (a simple optimization). */ if (dest.numRects < (dest.rects.size() >> 1)) dest.rects.resize(dest.numRects);}/*====================================================================== * Region Union *====================================================================*//*- *----------------------------------------------------------------------- * miUnionNonO -- * Handle a non-overlapping band for the union operation. Just
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -