📄 qlayoutengine.cpp
字号:
/******************************************************************************** Copyright (C) 1992-2006 Trolltech ASA. All rights reserved.**** This file is part of the QtGui module of the Qt Toolkit.**** This file may be used under the terms of the GNU General Public** License version 2.0 as published by the Free Software Foundation** and appearing in the file LICENSE.GPL included in the packaging of** this file. Please review the following information to ensure GNU** General Public Licensing requirements will be met:** http://www.trolltech.com/products/qt/opensource.html**** If you are unsure which license is appropriate for your use, please** review the following information:** http://www.trolltech.com/products/qt/licensing.html or contact the** sales department at sales@trolltech.com.**** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.******************************************************************************/#include "qlayout.h"#include "private/qlayoutengine_p.h"#include "qvector.h"#include "qwidget.h"#include <qlist.h>#include <qalgorithms.h>typedef qint64 Fixed;static inline Fixed toFixed(int i) { return (Fixed)i * 256; }static inline int fRound(Fixed i) { return (i % 256 < 128) ? i / 256 : 1 + i / 256;}/* This is the main workhorse of the QGridLayout. It portions out available space to the chain's children. The calculation is done in fixed point: "fixed" variables are scaled by a factor of 256. If the layout runs "backwards" (i.e. RightToLeft or Up) the layout is computed mirror-reversed, and it's the caller's responsibility do reverse the values before use. chain contains input and output parameters describing the geometry. count is the count of items in the chain; pos and space give the interval (relative to parentWidget topLeft).*/void qGeomCalc(QVector<QLayoutStruct> &chain, int start, int count, int pos, int space, int spacer){ int cHint = 0; int cMin = 0; int cMax = 0; int sumStretch = 0; int spacerCount = 0; bool wannaGrow = false; // anyone who really wants to grow? // bool canShrink = false; // anyone who could be persuaded to shrink? bool allEmptyNonstretch = true; int i; for (i = start; i < start + count; i++) { chain[i].done = false; cHint += chain[i].smartSizeHint(); cMin += chain[i].minimumSize; cMax += chain[i].maximumSize; sumStretch += chain[i].stretch; if (!chain[i].empty) spacerCount++; wannaGrow = wannaGrow || chain[i].expansive || chain[i].stretch > 0; allEmptyNonstretch = allEmptyNonstretch && !wannaGrow && chain[i].empty; } int extraspace = 0; if (spacerCount) spacerCount--; // only spacers between things if (space < cMin + spacerCount * spacer) { /* Less space than minimumSize; take from the biggest first */ int minSize = cMin + spacerCount * spacer; //shrink the spacers proportionally spacer = minSize > 0 ? (spacer * space) / minSize : 0; QList<int> list; for (i = start; i < start+count; i++) { list << chain[i].minimumSize; } qSort(list); int space_left = space - spacerCount*spacer; int sum = 0; int idx = 0; int space_used=0; int current = 0; while (idx < count && space_used < space_left) { current = list.at(idx); space_used = sum + current * (count - idx); sum += current; ++idx; } --idx; int deficit = space_used - space_left; int items = count - idx; int maxval = current - deficit/items; for (i = start; i < start+count; i++) { chain[i].size = qMin(chain[i].minimumSize, maxval); chain[i].done = true; } } else if (space < cHint + spacerCount*spacer) { /* Less space than smartSizeHint(), but more than minimumSize. Currently take space equally from each, as in Qt 2.x. Commented-out lines will give more space to stretchier items. */ int n = count; int space_left = space - spacerCount*spacer; int overdraft = cHint - space_left; // first give to the fixed ones: for (i = start; i < start + count; i++) { if (!chain[i].done && chain[i].minimumSize >= chain[i].smartSizeHint()) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = true; space_left -= chain[i].smartSizeHint(); // sumStretch -= chain[i].stretch; n--; } } bool finished = n == 0; while (!finished) { finished = true; Fixed fp_over = toFixed(overdraft); Fixed fp_w = 0; for (i = start; i < start+count; i++) { if (chain[i].done) continue; // if (sumStretch <= 0) fp_w += fp_over / n; // else // fp_w += (fp_over * chain[i].stretch) / sumStretch; int w = fRound(fp_w); chain[i].size = chain[i].smartSizeHint() - w; fp_w -= toFixed(w); // give the difference to the next if (chain[i].size < chain[i].minimumSize) { chain[i].done = true; chain[i].size = chain[i].minimumSize; finished = false; overdraft -= (chain[i].smartSizeHint() - chain[i].minimumSize); // sumStretch -= chain[i].stretch; n--; break; } } } } else { // extra space int n = count; int space_left = space - spacerCount*spacer; // first give to the fixed ones, and handle non-expansiveness for (i = start; i < start + count; i++) { if (!chain[i].done && (chain[i].maximumSize <= chain[i].smartSizeHint() || (wannaGrow && !chain[i].expansive && chain[i].stretch == 0) || (!allEmptyNonstretch && chain[i].empty && !chain[i].expansive && chain[i].stretch == 0))) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = true; space_left -= chain[i].size; sumStretch -= chain[i].stretch; n--; } } extraspace = space_left; /* Do a trial distribution and calculate how much it is off. If there are more deficit pixels than surplus pixels, give the minimum size items what they need, and repeat. Otherwise give to the maximum size items, and repeat. Paul Olav Tvete has a wonderful mathematical proof of the correctness of this principle, but unfortunately this comment is too small to contain it. */ int surplus, deficit; do { surplus = deficit = 0; Fixed fp_space = toFixed(space_left); Fixed fp_w = 0; for (i = start; i < start+count; i++) { if (chain[i].done) continue; extraspace = 0; if (sumStretch <= 0) fp_w += fp_space / n; else fp_w += (fp_space * chain[i].stretch) / sumStretch; int w = fRound(fp_w); chain[i].size = w; fp_w -= toFixed(w); // give the difference to the next if (w < chain[i].smartSizeHint()) { deficit += chain[i].smartSizeHint() - w; } else if (w > chain[i].maximumSize) { surplus += w - chain[i].maximumSize; } } if (deficit > 0 && surplus <= deficit) { // give to the ones that have too little for (i = start; i < start+count; i++) { if (!chain[i].done && chain[i].size < chain[i].smartSizeHint()) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = true; space_left -= chain[i].smartSizeHint(); sumStretch -= chain[i].stretch; n--; } } } if (surplus > 0 && surplus >= deficit) { // take from the ones that have too much for (i = start; i < start+count; i++) { if (!chain[i].done && chain[i].size > chain[i].maximumSize) { chain[i].size = chain[i].maximumSize; chain[i].done = true; space_left -= chain[i].maximumSize; sumStretch -= chain[i].stretch; n--; } } } } while (n > 0 && surplus != deficit); if (n == 0) extraspace = space_left; } /* As a last resort, we distribute the unwanted space equally among the spacers (counting the start and end of the chain). We could, but don't, attempt a sub-pixel allocation of the extra space. */ int extra = extraspace / (spacerCount + 2); int p = pos + extra; for (i = start; i < start+count; i++) { chain[i].pos = p; p = p + chain[i].size; if (!chain[i].empty) p += spacer+extra; }}Q_GUI_EXPORT QSize qSmartMinSize(const QWidgetItem *i){ QWidget *w = ((QWidgetItem *)i)->widget(); QSize s(0, 0); QSize msh(w->minimumSizeHint()); QSize sh(w->sizeHint()); if (w->sizePolicy().horizontalPolicy() != QSizePolicy::Ignored) { if (w->sizePolicy().horizontalPolicy() & QSizePolicy::ShrinkFlag) s.setWidth(msh.width()); else s.setWidth(qMax(sh.width(), msh.width())); } if (w->sizePolicy().verticalPolicy() != QSizePolicy::Ignored) { if (w->sizePolicy().verticalPolicy() & QSizePolicy::ShrinkFlag) { s.setHeight(msh.height()); } else { s.setHeight(qMax(sh.height(), msh.height())); } } s = s.boundedTo(w->maximumSize()); QSize min = w->minimumSize(); if (min.width() > 0) s.setWidth(min.width()); if (min.height() > 0) s.setHeight(min.height()); return s.expandedTo(QSize(0,0));}Q_GUI_EXPORT QSize qSmartMinSize(const QWidget *w){ QWidgetItem item(const_cast<QWidget *>(w)); return qSmartMinSize(&item);}Q_GUI_EXPORT QSize qSmartMaxSize(const QWidgetItem *i, Qt::Alignment align){ QWidget *w = ((QWidgetItem*)i)->widget(); if (align & Qt::AlignHorizontal_Mask && align & Qt::AlignVertical_Mask) return QSize(QLAYOUTSIZE_MAX, QLAYOUTSIZE_MAX); QSize s = w->maximumSize(); if (s.width() == QWIDGETSIZE_MAX && !(align & Qt::AlignHorizontal_Mask)) if (!(w->sizePolicy().horizontalPolicy() & QSizePolicy::GrowFlag)) s.setWidth(w->sizeHint().width()); if (s.height() == QWIDGETSIZE_MAX && !(align & Qt::AlignVertical_Mask)) if (!(w->sizePolicy().verticalPolicy() & QSizePolicy::GrowFlag)) s.setHeight(w->sizeHint().height()); s = s.expandedTo(w->minimumSize()); if (align & Qt::AlignHorizontal_Mask) s.setWidth(QLAYOUTSIZE_MAX); if (align & Qt::AlignVertical_Mask) s.setHeight(QLAYOUTSIZE_MAX); return s;}Q_GUI_EXPORT QSize qSmartMaxSize(const QWidget *w, Qt::Alignment align){ QWidgetItem item(const_cast<QWidget *>(w)); return qSmartMaxSize(&item, align);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -