📄 sga_sga.cpp
字号:
#include <stdio.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
/* 全局变量 */
struct individual /* 个体*/
{
unsigned *chrom; /* 染色体 */
double fitness; /* 个体适应度*/
double varible; /* 个体对应的变量值*/
int parent[2]; /* 父个体 */
};
struct bestever /* 最佳个体*/
{
unsigned *chrom; /* 最佳个体染色体*/
double fitness; /* 最佳个体适应度 */
double varible; /* 最佳个体对应的变量值 */
int generation; /* 最佳个体生成代 */
};
struct individual *oldpop; /* 当前代种群 */
struct individual *newpop; /* 新一代种群 */
struct bestever bestfit; /* 最佳个体 */
double sumfitness; /* 种群中个体适应度累计 */
double max; /* 种群中个体最大适应度 */
double avg; /* 种群中个体平均适应度 */
double min; /* 种群中个体最小适应度 */
float pcross; /* 交叉概率 */
float pmutation; /* 变异概率 */
int popsize; /* 种群大小 */
int lchrom; /* 染色体长度*/
int chromsize; /* 存储一染色体所需字节数 */
int gen; /* 当前世代数 */
int maxgen; /* 最大世代数 */
int run; /* 当前运行次数 */
int maxruns; /* 总运行次数 */
int printstrings; /* 输出染色体编码的判断,0 -- 不输出, 1 -- 输出 */
int nmutation; /* 当前代变异发生次数 */
int ncross; /* 当前代交叉发生次数 */
/* 函数声明 */
int flip(double);
int rnd(int, int);
double randomperc();
void initialize();
void initdata();
void initpop();
void generation();
void initmalloc();
void freeall();
void nomemory(char *);
void report();
void writepop();
void writechrom(unsigned *);
void preselect();
void statistics(struct individual *);
void title();
int select();
void objfunc(struct individual *);
int crossover (unsigned *, unsigned *, unsigned *, unsigned *);
void mutation(unsigned *);
void initialize() /* 遗传算法初始化 */
{
/* 键盘输入遗传算法参数 */
initdata();
/* 确定染色体的字节长度 */
chromsize = (lchrom/(8*sizeof(unsigned)));
if(lchrom%(8*sizeof(unsigned))) chromsize++;
/*分配给全局数据结构空间 */
initmalloc();
/* 初始化全局计数变量和一些数值*/
nmutation = 0;
ncross = 0;
bestfit.fitness = 0.0;
bestfit.generation = 0;
/* 初始化种群,并统计计算结果 */
initpop();
statistics(oldpop);
}
void initdata() /* 遗传算法参数输入 */
{
char answer[2];
printf("种群大小(20-100)");
scanf("%d", &popsize);
if((popsize%2)!=0)
{
printf("种群大小已设置为偶数\n");
popsize++;
}
printf("染色体长度(8-40):");
scanf("%d", &lchrom);
if(strncmp(answer,"n",1) == 0)
printstrings = 0;
printf("最大世代数(100-300):");
scanf("%d", &maxgen);
printf("交叉率(0.2-0.9):");
scanf("%f", &pcross);
printf("变异率(0.01-0.1):");
scanf("%f", &pmutation);
}
void initpop() /* 随机初始化种群 */
{
int j, j1, k, stop;
unsigned mask = 1;
for(j = 0; j < popsize; j++)
{
for(k = 0; k < chromsize; k++)
{
oldpop[j].chrom[k] = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j1 = 1; j1 <= stop; j1++)
{
oldpop[j].chrom[k] = oldpop[j].chrom[k]<<1;
if(flip(0.5))
oldpop[j].chrom[k] = oldpop[j].chrom[k]|mask;
}
}
oldpop[j].parent[0] = 0; /* 初始父个体信息 */
oldpop[j].parent[1] = 0;
objfunc(&(oldpop[j])); /* 计算初始适应度*/
}
}
void generation()
{
int mate1, mate2, jcross, j = 0;
/* 每代运算前进行预选 */
preselect();
/* 选择, 交叉, 变异 */
do
{
/* 挑选交叉配对 */
mate1 = select();
mate2 = select();
/* 交叉和变异 */
jcross = crossover(oldpop[mate1].chrom, oldpop[mate2].chrom, newpop[j].chrom, newpop[j+1].chrom);
mutation(newpop[j].chrom);
mutation(newpop[j+1].chrom);
/* 解码, 计算适应度 */
objfunc(&(newpop[j]));
/*记录亲子关系和交叉位置 */
newpop[j].parent[0] = mate1+1;
newpop[j].parent[1] = mate2+1;
objfunc(&(newpop[j+1]));
newpop[j+1].parent[0] = mate1+1;
newpop[j+1].parent[1] = mate2+1;
j = j + 2;
}
while(j < (popsize-1));
}
void initmalloc() /*为全局数据变量分配空间 */
{
unsigned nbytes;
int j;
/* 分配给当前代和新一代种群内存空间 */
nbytes = popsize*sizeof(struct individual);
if((oldpop = (struct individual *) malloc(nbytes)) == NULL)
nomemory("oldpop");
if((newpop = (struct individual *) malloc(nbytes)) == NULL)
nomemory("newpop");
/* 分配给染色体内存空间 */
nbytes = chromsize*sizeof(unsigned);
for(j = 0; j < popsize; j++)
{
if((oldpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("oldpop chromosomes");
if((newpop[j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("newpop chromosomes");
}
if((bestfit.chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("bestfit chromosome");
}
void freeall() /* 释放内存空间 */
{
int i;
for(i = 0; i < popsize; i++)
{
free(oldpop[i].chrom);
free(newpop[i].chrom);
}
free(oldpop);
free(newpop);
free(bestfit.chrom);
}
void nomemory(char *string) /* 内存不足,退出*/
{
printf("malloc: out of memory making %s!!\n",string);
exit(-1);
}
void report() /* 输出种群统计结果 */
{
if(printstrings == 1)
{
printf("世代数 %3d",gen);
printf("世代数 %3d\n", (gen+1));
printf("个体 染色体编码");
printf("适应度 父个体 交叉位置 ");
printf("染色体编码 ");
printf("适应度\n");
writepop();
}
printf("第 %d 代统计: \n",gen);
printf("总交叉操作次数 = %d, 总变异操作数 = %d\n",ncross,nmutation);
printf(" 最小适应度:%f 最大适应度:%f 平均适应度 %f\n", min,max,avg);
printf(" 迄今发现最佳个体 => 所在代数: %d \n", bestfit.generation);
printf(" 适应度:%f 染色体:\n", bestfit.fitness);
writechrom((&bestfit)->chrom);
printf(" 对应的变量值: %f", bestfit.varible);
}
void writepop()
{
struct individual *pind;
int j;
for(j=0; j<popsize; j++)
{
printf("%3d) ",j+1);
/* 当前代个体 */
pind = &(oldpop[j]);
writechrom(pind->chrom);
printf(" %8f | ", pind->fitness);
/* 新一代个体 */
pind = &(newpop[j]);
printf("(%2d,%2d) %2d ",
pind->parent[0], pind->parent[1]);
writechrom(pind->chrom);
printf(" %8f\n", pind->fitness);
}
printf("\n");
}
void writechrom(unsigned *chrom) /* 输出染色体编码 */
{
int j, k, stop;
unsigned mask = 1, tmp;
for(k = 0; k < chromsize; k++)
{
tmp = chrom[k];
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j = 0; j < stop; j++)
{
if(tmp&mask)
printf("1");
else
printf("0");
tmp = tmp>>1;
}
}
printf("\n");
}
void preselect()
{
int j;
sumfitness = 0;
for(j = 0; j < popsize; j++)
sumfitness += oldpop[j].fitness;
}
int select() /* 轮盘赌选择*/
{
double sum, pick;
int i;
pick = randomperc();
sum = 0;
if(sumfitness != 0)
{
for(i = 0; (sum < pick) && (i < popsize); i++)
sum += oldpop[i].fitness/sumfitness;
}
else
i = rnd(1,popsize);
return(i-1);
}
void statistics(struct individual *pop) /* 计算种群统计数据 */
{
int i, j;
sumfitness = 0.0;
min = pop[0].fitness;
max = pop[0].fitness;
/* 计算最大、最小和累计适应度 */
for(j = 0; j < popsize; j++)
{
sumfitness = sumfitness + pop[j].fitness;
if(pop[j].fitness > max) max = pop[j].fitness;
if(pop[j].fitness < min) min = pop[j].fitness;
/* new global best-fit individual */
if(pop[j].fitness > bestfit.fitness)
{
for(i = 0; i < chromsize; i++)
bestfit.chrom[i]=pop[j].chrom[i];
bestfit.fitness=pop[j].fitness;
bestfit.varible=pop[j].varible;
bestfit.generation=gen;
}
}
/* 计算平均适应度 */
avg=sumfitness/popsize;
}
void title()
{
printf(" 基本遗传算法\n");
printf("本程序实现了运用遗传算法求函数的最大值\n");
}
void objfunc(struct individual *critter) /* 计算适应度函数值 */
{
unsigned mask=1;
unsigned bitpos;
unsigned tp;
double bitpow ;
int j, k, stop;
critter->varible = 0.0;
for(k = 0; k < chromsize; k++)
{
if(k == (chromsize-1))
stop = lchrom-(k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
tp = critter->chrom[k];
for(j = 0; j < stop; j++)
{
bitpos = j + (8*sizeof(unsigned))*k;
if((tp&mask) == 1)
{
bitpow = pow(2.0,(double) bitpos);
critter->varible = critter->varible + bitpow;
}
tp = tp>>1;
}
}
critter->varible =-1+critter->varible*3/(pow(2.0,(double)lchrom)-1);
critter->fitness =critter->varible*sin(critter->varible*10*atan(1)*4)+2.0;
}
void mutation(unsigned *child) /*变异操作*/
{
int j, k, stop;
unsigned mask, temp = 1;
for(k = 0; k < chromsize; k++)
{
mask = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop = 8*sizeof(unsigned);
for(j = 0; j < stop; j++)
{
if(flip(pmutation))
{
mask = mask|(temp<<j);
nmutation++;
}
}
child[k] = child[k]^mask;
}
}
int crossover (unsigned *parent1, unsigned *parent2, unsigned *child1, unsigned *child2)
/* 由两个父个体交叉产生两个子个体 */
{
unsigned j, jcross;
int k;
unsigned mask, temp;
if(flip(pcross))
{
jcross = rnd(1 ,(lchrom-1));/* Cross between 1 and l-1 */
ncross++;
for(k = 1; k <= chromsize; k++)
{
if(jcross >= (k*(8*sizeof(unsigned))))
{
child1[k-1] = parent1[k-1];
child2[k-1] = parent2[k-1];
}
else if((jcross < (k*(8*sizeof(unsigned)))) && (jcross > ((k-1)*(8*sizeof(unsigned)))))
{
mask = 1;
for(j = 1; j <= (jcross-1-((k-1)*(8*sizeof(unsigned)))); j++)
{
temp = 1;
mask = mask<<1;
mask = mask|temp;
}
child1[k-1] = (parent1[k-1]&mask)|(parent2[k-1]&(~mask));
child2[k-1] = (parent1[k-1]&(~mask))|(parent2[k-1]&mask);
}
else
{
child1[k-1] = parent2[k-1];
child2[k-1] = parent1[k-1];
}
}
}
else
{
for(k = 0; k < chromsize; k++)
{
child1[k] = parent1[k];
child2[k] = parent2[k];
}
jcross = 0;
}
return(jcross);
}
int flip(double prob) // 以一定概率产生0或1
{
if(rand()/32767.0<= prob)
return(1);
else
return(0);
}
int rnd(int low,int high)
{
int i;
i=rand()%(high-low+2)+low-1;
if(i>high)
i=high;
else if(i<low)
i=low;
return i;
}
double rndf(double low,double high)
{
double i;
i = (rand()/32767.0)*(high-low+1.0)+low-0.5;
if(i>high)
i=high;
else if(i<low)
i=low;
return i;
}
double randomperc()
{
double i;
i=rand()/32767.0;
return i;
}
int main() /* 主程序 */
{
struct individual *temp;
void title();
srand( (unsigned)time( NULL ) );
title();
printf("输入遗传算法执行次数(1-5):");
scanf("%d",&maxruns);
for(run=1; run<=maxruns; run++)
{
initialize();
for(gen=1; gen<=maxgen; gen++)
{
printf("\n第 %d / %d 次运行: 当前代为 %d, 共 %d 代\n", run,maxruns,gen,maxgen);
/* 产生新一代 */
generation();
/* 计算新一代种群的适应度统计数据 */
statistics(newpop);
/* 输出新一代统计数据 */
report();
temp = oldpop;
oldpop = newpop;
newpop = temp;
}
freeall();
}
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -