⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 genburg.3

📁 speech signal process tools
💻 3
字号:
.\" Copyright (c) 1991 Entropic Research Laboratory, Inc.; All rights reserved.\" @(#)genburg.3	1.3 06 May 1997 ERL.ds ]W (c) 1991 Entropic Research Laboratory, Inc..TH  GENBURG 3\-ESPSsp 06 May 1997.SH NAME.nfgenburg \- generalized Burg (structured covariance) estimation of covariance matrix.fi.SH SYNOPSIS.nf.ft B #include <esps/stdio.h>#include <esps/window.h>#include <esps/ana_methods.h>extern int debug_level;genburg(sigma_in, isigma_in, qd, pdist, sigma_out, isigma_out, c_flag, 	monitor_flag, ret_flag, R_out, iR_out, init_flg, anderson)double *sigma_in;*double *isigma_in;*int    *qd;*double *pdist;doulbe *sigma_out;*doulbe *isigma_out;*double *R_out;*double *iR_out;*int    c_flag;*int    monitor_flag;*int    *ret_flag;*int    init_flg;*int    anderson;.ft.fi.SH DESCRIPTION.PP\fIgenbug\fP uses the algorithms discussed in [1] and [2] to find thebest estimate for the covariance matrix of single channel real orcomplex problem.  The input is a Hermitian sample covariance matrix,and the output is a Hermition (block) Toeplitz matrix.  All matricsare stored in row order.  Input sample covariance matrices can beobtained from \fIestimate_covar\fP (3\-\s-1ESPS\s+1sp)..PP\fIsigma_in\fP is the address of the real part of the input samplecovariance matrix, and \fIisigma_in\fP is the address of the imaginarypart. \fIqd\fP is the size (1 dimension) of the input (and output)matrices..PP\fIsigma_out\fP is the address of the real part of the output outputmatrix, and \fIisigma_out\fP is the address of the imaginary part. If\fIinit_flg\fP == 1 (see below), \fIsigma_out\fP and \fIisigma_out\fPare also as inputs to pass an initial guess to \fIgenburg\fP.\fIR_out\fP and \fIiR_out\fP are the final solution vectors used toconstruct \fIsimga_out\fP and \fIisigma_out\fP.  The finnal distance or measure is returned via \fIpdist\fP. .PPIf \fIc_flag\fP != 0, the inputs are complex.  If \fImonitor_flag\fP!= 0, intermediate results are printed on stdout.  .PPA function return status is returned in \fIret_flag\fP, with values as follows (some of these refer to internals of the algorithm): .nf	0 = no decrease in measure after 4 attempts	1 = Rinit or Rnew is singular or Rinit is negative definite	2 = sigma_in or Rinit is non-pos-definite 	3 = Aij singular 	4 = unsuccessful interpolation, or non positive definite Rnew	5 = successful measure ratio convergence test 	6 = insufficient storage allocation.fiThe parameter \fIinit_flag\fP has the following meanings: .nf	0 = use identity matrix as initial guess 	1 = use \fIsigma_out\fP and possibly \fIisigma_out\fP as initial guess	2 = use the first projection of \fIsigma_in\fP as initial guess	3 = use average + first projection as initial guess.fiIF \fIanderson\fP != 0, the Anderson version of the algorithm is used.Otherwise, the Burg version is used.  .SH EXAMPLES.PP.SH ERRORS AND DIAGNOSTICS.PP.SH FUTURE CHANGES.PP.SH BUGS.PPThis function is more general though not as reliable as the function\fIstruct_cov\fP(3\-\s-1ESPS\s+1sp)..SH REFERENCES.TP[1]J.P.Burg, D.G.Luenberger, D.L.Wenger, "Estimation of StructuredCovariance Matrices" \fIProceedings of the IEEE\fP, Vol. 70, No. 9September 1982.TP[2] T.W. Anderson, "Estimation for Autoregressive Moving AverageModels in the Timne and Frequency Domain," \fIThe Annals ofStatistics\fP, 1977, Vol. 5, No. 5, 842-865..TP[3]J.E. Shore, "On a Relation Between Maximum Liklihood Classification and Minimum Relative-Entropy Classification, \fIIEEE Transactions on Information Theory\fP, Vol. IT-30, No. 6, Nov. 1984, pp. 851-854..SH "SEE ALSO".PP.nf\fIestimate_covar\fP(3\-\s-1ESPS\s+1), \fIget_auto\fP(3\-\s-1ESPS\s+1), \fIstrcov_auto\fP(3\-\s-1ESPS\s+1), \fIstruct_cov\fP(3\-\s-1ESPS\s+1),\fIget_vburg\fP(3\-\s-1ESPS\s+1), \fIrefcof\fP(1\-\s-1ESPS\s+1), \fIme_spec\fP(1\-\s-1ESPS\s+1).fi.SH AUTHOR.PPProgram by Daniel Wenger, minor revisions and man page by John Shore.  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -