📄 minrelent.3
字号:
.\" Copyright (c) 1988-1990 Entropic Speech, Inc..\" Copyright (c) 1997 Entropic Research Laboratory, Inc. All rights reserved..\" @(#)minrelent.3 1.2 18 Apr 1997 ESI/ERL.ds ]W (c) 1997 Entropic Research Laboratory, Inc..TH MIN_REL_ENT 3\-ESPSsp 18 Apr 1997.if t .ds S \(*S.if n .ds S \fRSUM\fP.if t .ds f \fI.if n .ds f \fR.if t .ds a \(*a.if n .ds a "alpha .if t .ds b \(*b.if n .ds b beta.SH NAMEmin_rel_ent \- compute maximum-entropy or minmum-relative-entropy estimate of probability distribution.SH SYNOPSIS.ft B.nfdoublemin_rel_ent(p, c, q, beta, m, n, maxit, thresh) double *p, **c, *q, *beta; int m, n, maxit; double thresh;.SH DESCRIPTION.PPGiven.I p,an.I initial estimateof a probability distribution,and.I c,a.I constraint matrix,the function.I min_rel_entcomputes.I q,a.I final estimateof the probatility distribution.This is a vector with nonnegative elements\*fq\d\s-3j\s+3\u\fRthat satisfies the.I constraints.IP\*f\*S\d\s-3j\s+3\u c\d\s-3ij\s+3\uq\d\s-3j\s+3\u\fR = 0,.IP\*f\*S\d\s-3j\s+3\u q\d\s-3j\s+3\u\fR = 1,.LPand, subject to those constraints, minimizes the.I relative entropy,.IP\*f\*S\d\s-3j\s+3\u q\d\s-3j\s+3\u \fRlog\fP q\d\s-3j\s+3\u/p\d\s-3j\s+3\u\fR.LPof.I qwith respect to.I p.The solution is of the form.IP\*fq\d\s-3j\s+3\u = \*ap\d\s-3j\s+3\u \fRexp\fP \*S\d\s-3i\s+3\u \*b\d\s-3i\s+3\uc\d\s-3ij\s+3\u\fR.LPwhere \*a and the elements of \*b are Lagrange multipliers chosen tosatisfy the constraints. The value of \*b is available as an additionaloutput.I beta..PPTo obtain a maximum-entropy estimate.I qsubject to the stated constraints,use an initial estimate.I pwhose elements are all equal..PPThe function argument.I pshould be an array of.I nnonnegative numbers(or more precisely a pointer to the first element of such an array).The sum of the elements of.I pneed not be normalized to 1, and the same results should be obtainedas if each element were divided by the sum.The argument.I cshould be an.I mby.I nmatrix, represented as an array of.I mpointers to rows of length.I n.(Such structures can be allocated by.IR arr_alloc (3-ESPSu)).The arguments.I qand.I betashould be arrays of lengths.I nand.I mto hold the results;these must be allocated by the calling program.The arguments.I mand.I ngive the array dimensions.The argument.I threshis a convergence criterion.The function uses an iterative procedure that terminates as soon asthe relative change in the computed value of every element of.I qis less than.I threshfrom one iteration to the next.If the convergence criterion is not satisfied after.I maxititerations, the procedure prints an error message and terminates anyway.The function value returned by.I min_rel_entis the maximum relative change in any element of.I qbetween the last iteration and the next to last.It is less than.I threshin case of successful terminationand not otherwise..SH DIAGNOSTICSFunction value greater than or equal to.I thresh;error message:.IPmin_rel_ent: convergence failed after \fIn\fP iterations..SH BUGSNone known..SH REFERENCES.LP1. R. Johnson,``Determining Probability Distributions by Maximum Entropyand Minimum Cross-Entropy,''.I APL Quote Quad,vol. 9, no. 4, June 1979, pp. 24-29.(APL 79 Conference Proceedings)..LP2. J. Shore and R. Johnson,``Axiomatic Derivation of the Principle of Maximum Entropyand the Principle of Minimum Relative Entropy,''.I IEEE Trans. Information Theory,vol. IT-26, no. 1, pp. 26-37, Jan. 1980.SH SEE ALSO.nf\fIrel_ent\fP(3\-ESPSsp).fi.SH AUTHORRodney W. Johnson, Entropic Speech, Inc.Based on an APL function from Ref. 2and on a Fortran adataption by Joseph T. Buck.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -