📄 genburg.c
字号:
} Rnew_R(); } Rnew_R0();/* use Rnew for next iteration */ return(rtflag); } fprintf(stderr,"trouble ckRnew\n"); exit(1); /*NOTREACHED*/}cvtest(R_measure,Rnew_measure)/* convergence test on measure change */register double R_measure,Rnew_measure;{ register double temp; temp=(R_measure-Rnew_measure)/Rnew_measure; temp=(temp>=0)?temp:-temp; if(temp<cvfact) { if(moflag) fprintf(stderr,"Stopping due to convergence, rel_ratio=%g cvfact=%g\n",temp,cvfact); return(1); } return(0);}inv_det(tR,itR,siginv,isiginv,pdet) /* return inverse and natural log of determinant */double *tR,*itR,*siginv,*isiginv,*pdet;{ int rtflag; if(scflag) { if(rflag) { rtflag=ltoepinv(tR,siginv,pdet,qp); return(rtflag); } if(cflag) { rtflag=lctoepinv(tR,itR,siginv,isiginv,pdet,qp); return(rtflag); } } if(mdflag || mcflag) { makesigma(tR,itR,sigtemp,isigtemp,Pi); if(rflag) { /* test for positive definitness with cholesky but use more accurate orthogonalizaton technique to get siginv if positive def */ /* dmmove(sigtemp,sig2temp,qp); rtflag=lsyminv(sig2temp,siginv,sig1temp,qp,pdet); */ rtflag=lsyminv(sigtemp,siginv,sig1temp,qp,pdet); if(rtflag)return(rtflag); /* rtflag=ldmsyminv(sigtemp,siginv,pdet,qp,0); */ return(rtflag); } if(cflag) { fprintf(stderr,"no ln|R| available\n"); exit(1); /* rtflag=lhdmsym(siginv,isiginv,siginv,isiginv,pdet,qp); return(rtflag); */ } } fprintf(stderr,"Error in inv_det\n"); exit(1); /*NOTREACHED*/}doubledomeasure(siginv,isiginv,det) /* det is the natural logrithm of the determinant of R */register double det,*siginv,*isiginv;{ register double measure; double hdmtrace(),dmtrace(); if(rflag) { measure=dmtrace(siginv,S,qp)-qp; measure=measure+det-logdetS; } if(cflag) { measure=hdmtrace(siginv,isiginv,S,iS,qp)-qp; measure=measure+det-logdetS; } return(measure);}do_algorithm()/* make an Rnew[] from the R0[] using the algorithm *//* R0 is known to be positive definite */{ register int rtflag; double dum; doBi(siginv,Pi,Bi,qp);/* make Bi */ /* sig1temp=siginv*S*siginv */ /* sigtemp=siginv*S*siginv - siginv */ if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag) /* do not allow anderson on first iteration unless initflag=2 or 3, do not allow anderson in complex case */ { dmadd(sigtemp,sig1temp,sig2temp,qp);/* make 2*siginv*S*siginv-siginv */ doAij(sig2temp,siginv,Aij);/* make Aij */ } else { if(rflag) doAij(siginv,siginv,Aij);/* make Aij */ if(cflag) docAij(siginv,isiginv,siginv,isiginv,Aij);/* make Aij */ } /* rtflag=ldmsyminv(Aij,Ainv,&dum,tNi,0); if(rtflag==1) { fprintf(stderr,"Aij singular\n"); return(3); } doRnew(Ainv,Bi); */ /* solves Aij*x=y, Aij pos definite */ /* tBi=x, Bi=y, ttBi=tttBi=temp vector, M and Ainv are temp matrices */ if(posdefsol(Aij,M,Ainv,tBi,Bi,ttBi,tttBi,tNi)) { if(moflag) fprintf(stderr,"Aij npd from posdefsol\n"); if(anderson)/* try burg algorithm */ { fprintf(stderr,"trying burg algorithm\n"); anderson=0; rtflag=do_algorithm(); return(rtflag); } else { rtflag=ldmsyminv(Aij,Ainv,&dum,tNi,0); if(rtflag==1) { fprintf(stderr,"Aij singular from ldmsyminv\n"); return(3); } doRnew(Ainv,Bi); return(0); } } else DooRnew(tBi,Rnew,R0);/* breakup tBi[] into Rnew[] and iRnew[] */ return(0);}DooRnew(tBi,Rnew,R0)/* breakup tBi[] into Rnew[] and iRnew[] */register double tBi[],Rnew[],R0[];{ register int i,fNi; register double dum; fNi=Ni; if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag) { for(i=0;i<fNi;i++) { dum=tBi[i]+R0[i]; Rnew[i]=dum; } } else { dvmove(tBi,Rnew,fNi); if(cflag) dvmove(tBi+fNi,iRnew+1,tNi-fNi); } return;}doAspec(siginv,matrix,Aij)register double matrix[],siginv[],Aij[];{ register double At; register int tab; register short *p; p=Aijtab; while(*p!= -2) { At=0; while((tab=(*p))!= -1) { p++; At+=siginv[tab]*matrix[*p]; p++; } p++; *(Aij+ *p)=At; p++; *(Aij+ *p)=At; p++; } return;}doAij(matrix,siginv,Aij)/* make Aij real case */register double matrix[],siginv[],Aij[];/* Aij=trace Pi*siginv*Pj*matrix *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{ register int i,j,iM,jM,fNi,ftNi; register double At; double dooAij(); /* cntAij++; if(cntAij>3)return; */ if(iiflag==2)/* unroll table has been made */ { if(qdim==qdimsave && pdim==pdimsave) /* unroll table has been made and it is for the current dimension */ { doAspec(siginv,matrix,Aij); return; }/* do fast Aij */ else { /* unroll table is not for current dimension */ freedp(&Aijtab);/* free storage */ iiflag=0;/*set to count for new table size */ } } /* setup for unroll */ /* first time (iiflag==0) just count for size of unroll table, second time (iiflag==1) assign indices to table */ ii=0; pAijtab=Aijtab; fNi=Ni; ftNi=tNi; /* do Pi*siginv*Pj*matrix */ /* see comments on Aij in Aijxxx */ for(i=iM=0;i<fNi;i++,iM+=ftNi) { make(Pi,i); for(j=i,jM=iM+i;j<fNi;j++,jM+=ftNi) { if(i==j) { At=dooAij(siginv,Pi,matrix,Pi); Aij[iM+j]=At; } else { make(Pj,j); At=dooAij(siginv,Pi,matrix,Pj); Aij[jM]=Aij[iM+j]=At; } setunroll(jM,iM+j); } } finishunroll(); return;}docAij(matrix,imatrix,siginv,isiginv,Aij)/* do complex case Aij */register double matrix[],imatrix[],siginv[],isiginv[],Aij[];/* Aij=trace Pi*siginv*Pj*matrix *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{ register int i,j,iM,jM,fNi,ftNi; int NixtNi; register double At; double doocAij(); fNi=Ni; ftNi=tNi; /* do Pi*siginv*Pj*matrix - Pi*isiginv*Pj*imatrix */ /* see comments on Aij */ for(i=0,iM=0;i<fNi;i++,iM+=ftNi) { make(Pi,i); for(j=i,jM=iM+i;j<fNi;j++,jM+=ftNi) { if(i==j) { At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pi,0); Aij[iM+j]=At; } else { make(Pj,j); At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,0); Aij[jM]=Aij[iM+j]=At; } } } NixtNi=fNi*ftNi; /* do Pi*siginv*iPj*imatrix + Pi*isiginv*iPj*matrix */ for(i=0,iM=0;i<fNi;i++,iM+=ftNi) { make(Pi,i); for(j=fNi,jM=NixtNi;j<ftNi;j++,jM+=ftNi) { make(Pj,j-fNi+1); At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,1); Aij[jM+i]=Aij[iM+j]=At; } } /* do iPi*siginv*iPj*matrix - iPi*isiginv*iPj*imatrix */ for(i=fNi,iM=NixtNi;i<ftNi;i++,iM+=ftNi) { make(Pi,i-fNi+1); for(j=i,jM=iM;j<ftNi;j++,jM+=ftNi) { if(i==j) { At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pi,2); Aij[iM+j]=At; } else { make(Pj,j-fNi+1); At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,2); Aij[jM+i]=Aij[iM+j]=At; } } } return;}finishunroll(){ if(iiflag==1)/* making table */ { /* signal end of table */ *pAijtab= -2; pAijtab++; } ii++; if(iiflag==0)/* not yet made table */ { if(allocsp(&Aijtab,ii)) fprintf(stderr,"cannot allocate for Aijtab\n"); else { iiflag=1;/* set to make table */ qdimsave=qdim;/* save dimensions of table */ pdimsave=pdim; } } else if(iiflag==1)/* if makeing table, set table finished */ iiflag=2;/* table finished */ return;}setunroll(i1,i2)/* set up addresses for unroll or just count for allocation */register int i1,i2;{ if(iiflag==1)/* making table */ { *pAijtab= -1;/* signal new element */ pAijtab++; *pAijtab=i1; pAijtab++; *pAijtab=i2; pAijtab++; } else { /* doing count only */ ii++; ii++; ii++; } return;}doubledooAij(siginv,Pi,matrix,Pj)register double *matrix,*siginv;register short *Pj,*Pi;/* Aij=trace Pi*siginv*Pj*matrix *//* matrix is siginv or 2*siginv*S*siginv-siginv *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{ register int m,n,nM,p,q,qM,qpr; register short *pPj; register double At; qpr=qp; At=0; for(m=0;m<qpr;m++) { for(n=0,nM=0;n<qpr;n++,Pi++,nM+=qpr) { if(!*Pi) continue; pPj=Pj; for(p=0;p<qpr;p++) { for(q=0,qM=m;q<qpr;q++,qM+=qpr,pPj++) { if(!*pPj) continue; At+= *(siginv+nM+p)* *(matrix+qM); if(iiflag)/* making table */ { *pAijtab=nM+p; pAijtab++; *pAijtab=qM; pAijtab++; } else/* just counting */ { ii++; ii++; } } } } } return(At);}doubledoocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,flag)/* complex case */register double *matrix,*imatrix,*siginv,*isiginv;register short *Pj,*Pi;register int flag;/* indicates the terms in the complex expansion *//* Aij=trace Pi*siginv*Pj*matrix *//* matrix is siginv or 2*siginv*S*siginv-siginv *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{ register int m,n,nM,p,q,qM,qpr; register short *pPj; register double At; double doooA(); qpr=qp; At=0; for(m=0;m<qpr;m++) { for(n=0,nM=0;n<qpr;n++,Pi++,nM+=qpr) { if(!*Pi) continue; pPj=Pj; for(p=0;p<qpr;p++) { for(q=0,qM=m;q<qpr;q++,qM+=qpr,pPj++) { if(!*pPj) continue; At+=doooA(siginv,isiginv,matrix,imatrix,nM+p,qM,flag,n,m,p,q); } } } } return(At);}double /* do multiplication of matrices, see comments in Aijxxx */doooA(siginv,isiginv,matrix,imatrix,i1,i2,flag,n,m,p,q)register double siginv[],isiginv[],matrix[],imatrix[];register int i1,i2,flag,n,m,p,q;{ register double term; if (!flag) { term = *(siginv + i1) * *(matrix + i2) - *(isiginv + i1) * *(imatrix + i2); return (term); } else if (flag == 1) { term = (siginv[i1] * imatrix[i2] + isiginv[i1] * matrix[i2]); if (q > p) return (-term); else return (term); } else /* if (flag == 2) */ { /* fact1=(n>m)?1:-1; fact2=(q>p)?1:-1; */ /* here complex Pi are positive one in upper triangle */ term = siginv[i1] * matrix[i2] - isiginv[i1] * imatrix[i2]; if (((n > m) && (q > p)) || ((m > n) && (p > q))) return (-term); else return (term); }}/*Aijxxx see also the discussion in doBiAij=trace[Pi*siginv*M*Pj] where M=2*siginv*S*siginv-siginv or =siginvsiginv*S*siginv is hermitianM is hermitian since it is composed of hermitian matricesAij is hermitian,Aij=trace[Pi*siginv*Pj*M]=trace[Pj*M*Pi*siginv]=trace[(M*Pj)'*(siginv*Pi)']=trace[siginv*Pi*M*Pj]complex conjugate=trace[Pj*siginv*Pi*M]complex conjugate=Aji complex conjugate, Q.E.D.For M=siginv, Aij is symmetric and realFor the real case, Aij is symmtric and realThe Pi and Pj are symmetric, the iPi and iPj are anti-symmetrictrace [ Pi*siginv*Pj*matrix ]=trace [ Pi*siginv*Pj*matrix ]+ flag=0trace [ iPi*siginv*Pj*matrix ]+ anti-symmetric, trace zerotrace [ Pi*siginv*iPj*matrix ]+ anti-symmetric, trace zerotrace [ iPi*siginv*iPj*matrix ]+ flag=2trace [ Pi*siginv*Pj*imatrix ]+ anti-symmetric, trace zerotrace [ iPi*siginv*Pj*imatrix ]+ term not computed directly, use Aji trace [ Pi*siginv*iPj*imatrix ]+ flag=1trace [ iPi*siginv*iPj*matrix ]+ imaginary, does not contributetrace [ Pi*isiginv*Pj*matrix ]+ anti-symmetric, trace zerotrace [ iPi*isiginv*Pj*matrix ]+ term not computed directly, use Aji trace [ Pi*isiginv*iPj*matrix ]+ flag=1trace [ iPi*isiginv*iPj*matrix ]+ imaginary, does not contributetrace [ Pi*isiginv*Pj*imatrix ]+ flag=0trace [ iPi*isiginv*Pj*imatrix ]+ imaginary, does not contributetrace [ Pi*isiginv*iPj*imatrix ]+ imaginary, does not contributetrace [ iPi*isiginv*iPj*imatrix ] flag=2The Aij matrix is tNi by tNi, the Ni by Ni portion is due to the realPi, the others parts involve the imaginary iPi.*/doBi(siginv,Pi,Bi,qp) /* make Bi */register double Bi[],siginv[];register short *Pi;register int qp;/* Bi[i]=trace siginv*S*siginv*Pi */{ register int i,fNi,ftNi; register double Bt; double spdmtrace(); fNi=Ni; ftNi=tNi; if(rflag) { dmmult(S,siginv,sigtemp,qp);/* make S*siginv */ dmmult(siginv,sigtemp,sig1temp,qp);/* make siginv*S*siginv */ if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag) { dmsub(sig1temp,siginv,sigtemp,qp);/* make siginv*S*siginv-siginv */ /* sig1temp=siginv*S*siginv */ /* sigtemp=siginv*S*siginv - siginv */ } for(i=0;i<fNi;i++) { make(Pi,i); if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag) Bt=spdmtrace(sigtemp,Pi,qp);/*trace(siginv*S*siginv-siginv)Pi */ else Bt=spdmtrace(sig1temp,Pi,qp);/*trace(siginv*S*siginv*Pi) */ Bi[i]=Bt; } return; } /* complex case Bi is real Let M' be the complex transpose of M, if M=M', then M is hermitian, siginv and S and Pi are hermitian,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -