⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 genburg.c

📁 speech signal process tools
💻 C
📖 第 1 页 / 共 3 页
字号:
				}			Rnew_R();			}		Rnew_R0();/* use Rnew for next iteration */		return(rtflag);		}	fprintf(stderr,"trouble ckRnew\n");	exit(1);	/*NOTREACHED*/}cvtest(R_measure,Rnew_measure)/* convergence test on measure change */register double R_measure,Rnew_measure;{	register double temp;	temp=(R_measure-Rnew_measure)/Rnew_measure;	temp=(temp>=0)?temp:-temp;	if(temp<cvfact)		{		if(moflag)			fprintf(stderr,"Stopping due to convergence, rel_ratio=%g cvfact=%g\n",temp,cvfact);		return(1);		}	return(0);}inv_det(tR,itR,siginv,isiginv,pdet)	/* return inverse and natural log of determinant */double *tR,*itR,*siginv,*isiginv,*pdet;{		int rtflag;		if(scflag)			{			if(rflag)				{				rtflag=ltoepinv(tR,siginv,pdet,qp);				return(rtflag);				}			if(cflag)				{				rtflag=lctoepinv(tR,itR,siginv,isiginv,pdet,qp);				return(rtflag);				}			}		if(mdflag || mcflag)			{			makesigma(tR,itR,sigtemp,isigtemp,Pi);			if(rflag)				{				/* test for positive definitness with cholesky				but use more accurate orthogonalizaton technique				to get siginv if positive def */			/*			dmmove(sigtemp,sig2temp,qp);			rtflag=lsyminv(sig2temp,siginv,sig1temp,qp,pdet);			*/			rtflag=lsyminv(sigtemp,siginv,sig1temp,qp,pdet);				if(rtflag)return(rtflag);				/*				rtflag=ldmsyminv(sigtemp,siginv,pdet,qp,0);				*/				return(rtflag);				}			if(cflag)				{				fprintf(stderr,"no ln|R| available\n");				exit(1);				/*				rtflag=lhdmsym(siginv,isiginv,siginv,isiginv,pdet,qp);				return(rtflag);				*/				}			}	fprintf(stderr,"Error in inv_det\n");	exit(1);	/*NOTREACHED*/}doubledomeasure(siginv,isiginv,det)	/* det is the natural logrithm of the determinant of R */register double det,*siginv,*isiginv;{	register double measure;	double hdmtrace(),dmtrace();	if(rflag)		{		measure=dmtrace(siginv,S,qp)-qp;		measure=measure+det-logdetS;		}	if(cflag)		{		measure=hdmtrace(siginv,isiginv,S,iS,qp)-qp;		measure=measure+det-logdetS;		}	return(measure);}do_algorithm()/* make an Rnew[] from the R0[] using the algorithm *//* R0 is known to be positive definite */{	register int rtflag;	double dum;	doBi(siginv,Pi,Bi,qp);/* make Bi */	/* sig1temp=siginv*S*siginv */	/* sigtemp=siginv*S*siginv - siginv */	if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag)	/* do not allow anderson on first iteration unless initflag=2 or 3, do not allow anderson in complex case */		{		dmadd(sigtemp,sig1temp,sig2temp,qp);/* make 2*siginv*S*siginv-siginv */		doAij(sig2temp,siginv,Aij);/* make Aij */		}	else		{		if(rflag)			doAij(siginv,siginv,Aij);/* make Aij */		if(cflag)			docAij(siginv,isiginv,siginv,isiginv,Aij);/* make Aij */		}	/*	rtflag=ldmsyminv(Aij,Ainv,&dum,tNi,0);	if(rtflag==1)		{ fprintf(stderr,"Aij singular\n"); return(3); }	doRnew(Ainv,Bi);	*/	/* solves Aij*x=y, Aij pos definite */	/* tBi=x, Bi=y, ttBi=tttBi=temp vector, M and Ainv are temp matrices */	if(posdefsol(Aij,M,Ainv,tBi,Bi,ttBi,tttBi,tNi))		{		if(moflag)			fprintf(stderr,"Aij npd from posdefsol\n");		if(anderson)/* try burg algorithm */			{			fprintf(stderr,"trying burg algorithm\n");			anderson=0;			rtflag=do_algorithm();			return(rtflag);			}		else			{			rtflag=ldmsyminv(Aij,Ainv,&dum,tNi,0);			if(rtflag==1)				{ fprintf(stderr,"Aij singular from ldmsyminv\n"); return(3); }			doRnew(Ainv,Bi);			return(0);			}		}	else		DooRnew(tBi,Rnew,R0);/* breakup tBi[] into Rnew[] and iRnew[] */	return(0);}DooRnew(tBi,Rnew,R0)/* breakup tBi[] into Rnew[] and iRnew[] */register double tBi[],Rnew[],R0[];{	register int i,fNi;	register double dum;	fNi=Ni;	if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag)		{		for(i=0;i<fNi;i++)			{			dum=tBi[i]+R0[i];			Rnew[i]=dum;			}		}	else		{		dvmove(tBi,Rnew,fNi);		if(cflag)			dvmove(tBi+fNi,iRnew+1,tNi-fNi);		}	return;}doAspec(siginv,matrix,Aij)register double matrix[],siginv[],Aij[];{	register double At;	register int tab;	register short *p;	p=Aijtab;	while(*p!= -2)		{		At=0;		while((tab=(*p))!= -1)			{			p++;			At+=siginv[tab]*matrix[*p];			p++;			}		p++;		*(Aij+ *p)=At;		p++;		*(Aij+ *p)=At;		p++;		}	return;}doAij(matrix,siginv,Aij)/* make Aij real case */register double matrix[],siginv[],Aij[];/* Aij=trace Pi*siginv*Pj*matrix *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{	register int i,j,iM,jM,fNi,ftNi;	register double At;	double dooAij();	/*	cntAij++;	if(cntAij>3)return;	*/	if(iiflag==2)/* unroll table has been made */		{		if(qdim==qdimsave && pdim==pdimsave)			/* unroll table has been made and it is for the current			dimension */			{ doAspec(siginv,matrix,Aij); return; }/* do fast Aij */		else			{			/* unroll table is not for current dimension */			freedp(&Aijtab);/* free storage */			iiflag=0;/*set to count for new table size */			}		}	/* setup for unroll */	/* first time (iiflag==0) just count for size of unroll table,	second time (iiflag==1) assign indices to table */	ii=0;	pAijtab=Aijtab;	fNi=Ni;	ftNi=tNi;	/* do Pi*siginv*Pj*matrix */	/* see comments on Aij in Aijxxx */	for(i=iM=0;i<fNi;i++,iM+=ftNi)		{		make(Pi,i);		for(j=i,jM=iM+i;j<fNi;j++,jM+=ftNi)			{			if(i==j)				{				At=dooAij(siginv,Pi,matrix,Pi);				Aij[iM+j]=At;				}			else				{				make(Pj,j);				At=dooAij(siginv,Pi,matrix,Pj);				Aij[jM]=Aij[iM+j]=At;				}			setunroll(jM,iM+j);			}		}	finishunroll();	return;}docAij(matrix,imatrix,siginv,isiginv,Aij)/* do complex case Aij */register double matrix[],imatrix[],siginv[],isiginv[],Aij[];/* Aij=trace Pi*siginv*Pj*matrix *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{	register int i,j,iM,jM,fNi,ftNi;	int NixtNi;	register double At;	double doocAij();	fNi=Ni;	ftNi=tNi;	/* do Pi*siginv*Pj*matrix - Pi*isiginv*Pj*imatrix */	/* see comments on Aij */	for(i=0,iM=0;i<fNi;i++,iM+=ftNi)		{		make(Pi,i);		for(j=i,jM=iM+i;j<fNi;j++,jM+=ftNi)			{			if(i==j)				{				At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pi,0);				Aij[iM+j]=At;				}			else				{				make(Pj,j);				At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,0);				Aij[jM]=Aij[iM+j]=At;				}			}		}	NixtNi=fNi*ftNi;	/* do Pi*siginv*iPj*imatrix + Pi*isiginv*iPj*matrix */	for(i=0,iM=0;i<fNi;i++,iM+=ftNi)		{		make(Pi,i);		for(j=fNi,jM=NixtNi;j<ftNi;j++,jM+=ftNi)			{			make(Pj,j-fNi+1);			At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,1);			Aij[jM+i]=Aij[iM+j]=At;			}		}	/* do iPi*siginv*iPj*matrix - iPi*isiginv*iPj*imatrix */	for(i=fNi,iM=NixtNi;i<ftNi;i++,iM+=ftNi)		{		make(Pi,i-fNi+1);		for(j=i,jM=iM;j<ftNi;j++,jM+=ftNi)			{			if(i==j)				{				At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pi,2);				Aij[iM+j]=At;				}			else				{				make(Pj,j-fNi+1);				At=doocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,2);				Aij[jM+i]=Aij[iM+j]=At;				}			}		}	return;}finishunroll(){	if(iiflag==1)/* making table */		{		/* signal end of table */		*pAijtab= -2;		pAijtab++;		}	ii++;	if(iiflag==0)/* not yet made table */		{		if(allocsp(&Aijtab,ii))			fprintf(stderr,"cannot allocate for Aijtab\n");		else			{			iiflag=1;/* set to make table */			qdimsave=qdim;/* save dimensions of table */			pdimsave=pdim;			}		}	else if(iiflag==1)/* if makeing table, set table finished */		iiflag=2;/* table finished */	return;}setunroll(i1,i2)/* set up addresses for unroll or just count for allocation */register int i1,i2;{	if(iiflag==1)/* making table */		{		*pAijtab= -1;/* signal new element */		pAijtab++;		*pAijtab=i1;		pAijtab++;		*pAijtab=i2;		pAijtab++;		}	else		{		/* doing count only */		ii++;		ii++;		ii++;		}	return;}doubledooAij(siginv,Pi,matrix,Pj)register double *matrix,*siginv;register short *Pj,*Pi;/* Aij=trace Pi*siginv*Pj*matrix *//* matrix is siginv or 2*siginv*S*siginv-siginv *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{	register int m,n,nM,p,q,qM,qpr;	register short *pPj;	register double At;	qpr=qp;	At=0;	for(m=0;m<qpr;m++)		{		for(n=0,nM=0;n<qpr;n++,Pi++,nM+=qpr)			{			if(!*Pi)				continue;			pPj=Pj;			for(p=0;p<qpr;p++)				{				for(q=0,qM=m;q<qpr;q++,qM+=qpr,pPj++)					{					if(!*pPj)						continue;					At+= *(siginv+nM+p)* *(matrix+qM);					if(iiflag)/* making table */						{ *pAijtab=nM+p; pAijtab++; *pAijtab=qM; pAijtab++; }					else/* just counting */						{ ii++; ii++; }					}				}			}		}	return(At);}doubledoocAij(siginv,isiginv,Pi,matrix,imatrix,Pj,flag)/* complex case */register double *matrix,*imatrix,*siginv,*isiginv;register short *Pj,*Pi;register int flag;/* indicates the terms in the complex expansion *//* Aij=trace Pi*siginv*Pj*matrix *//* matrix is siginv or 2*siginv*S*siginv-siginv *//* Aij= (Pi)mn*(siginv)np*(Pj)pq*(matrix)qm with Einstein summation convent. */{	register int m,n,nM,p,q,qM,qpr;	register short *pPj;	register double At;	double doooA();	qpr=qp;	At=0;	for(m=0;m<qpr;m++)		{		for(n=0,nM=0;n<qpr;n++,Pi++,nM+=qpr)			{			if(!*Pi)				continue;			pPj=Pj;			for(p=0;p<qpr;p++)				{				for(q=0,qM=m;q<qpr;q++,qM+=qpr,pPj++)					{					if(!*pPj)						continue;			At+=doooA(siginv,isiginv,matrix,imatrix,nM+p,qM,flag,n,m,p,q);					}				}			}		}	return(At);}double /* do multiplication of matrices, see comments in Aijxxx */doooA(siginv,isiginv,matrix,imatrix,i1,i2,flag,n,m,p,q)register double siginv[],isiginv[],matrix[],imatrix[];register int i1,i2,flag,n,m,p,q;{    register double term;    if (!flag) {	term = *(siginv + i1) * *(matrix + i2) - *(isiginv + i1) * *(imatrix + i2);	return (term);    }    else if (flag == 1) {	term = (siginv[i1] * imatrix[i2] + isiginv[i1] * matrix[i2]);	if (q > p)	    return (-term);	else	    return (term);    }    else /* if (flag == 2) */ {    /* fact1=(n>m)?1:-1; fact2=(q>p)?1:-1; */    /* here complex Pi are positive one in upper triangle */	term = siginv[i1] * matrix[i2] - isiginv[i1] * imatrix[i2];	if (((n > m) && (q > p)) || ((m > n) && (p > q)))	    return (-term);	else	    return (term);    }}/*Aijxxx see also the discussion in doBiAij=trace[Pi*siginv*M*Pj] where M=2*siginv*S*siginv-siginv or =siginvsiginv*S*siginv is hermitianM is hermitian since it is composed of hermitian matricesAij is hermitian,Aij=trace[Pi*siginv*Pj*M]=trace[Pj*M*Pi*siginv]=trace[(M*Pj)'*(siginv*Pi)']=trace[siginv*Pi*M*Pj]complex conjugate=trace[Pj*siginv*Pi*M]complex conjugate=Aji complex conjugate, Q.E.D.For M=siginv, Aij is symmetric and realFor the real case, Aij is symmtric and realThe Pi and Pj are symmetric, the iPi and iPj are anti-symmetrictrace [ Pi*siginv*Pj*matrix ]=trace [ Pi*siginv*Pj*matrix ]+		flag=0trace [ iPi*siginv*Pj*matrix ]+		anti-symmetric, trace zerotrace [ Pi*siginv*iPj*matrix ]+		anti-symmetric, trace zerotrace [ iPi*siginv*iPj*matrix ]+	flag=2trace [ Pi*siginv*Pj*imatrix ]+		anti-symmetric, trace zerotrace [ iPi*siginv*Pj*imatrix ]+	term not computed directly, use Aji trace [ Pi*siginv*iPj*imatrix ]+	flag=1trace [ iPi*siginv*iPj*matrix ]+	imaginary, does not contributetrace [ Pi*isiginv*Pj*matrix ]+		anti-symmetric, trace zerotrace [ iPi*isiginv*Pj*matrix ]+	term not computed directly, use Aji trace [ Pi*isiginv*iPj*matrix ]+	flag=1trace [ iPi*isiginv*iPj*matrix ]+	imaginary, does not contributetrace [ Pi*isiginv*Pj*imatrix ]+	flag=0trace [ iPi*isiginv*Pj*imatrix ]+	imaginary, does not contributetrace [ Pi*isiginv*iPj*imatrix ]+	imaginary, does not contributetrace [ iPi*isiginv*iPj*imatrix ]	flag=2The Aij matrix is tNi by tNi, the Ni by Ni portion is due to the realPi, the others parts involve the imaginary iPi.*/doBi(siginv,Pi,Bi,qp)	/* make Bi */register double Bi[],siginv[];register short *Pi;register int qp;/* Bi[i]=trace siginv*S*siginv*Pi */{	register int i,fNi,ftNi;	register double Bt;	double spdmtrace();	fNi=Ni;	ftNi=tNi;	if(rflag)	{	dmmult(S,siginv,sigtemp,qp);/* make S*siginv */	dmmult(siginv,sigtemp,sig1temp,qp);/* make siginv*S*siginv */	if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag)		{		dmsub(sig1temp,siginv,sigtemp,qp);/* make siginv*S*siginv-siginv */		/* sig1temp=siginv*S*siginv */		/* sigtemp=siginv*S*siginv - siginv */		}	for(i=0;i<fNi;i++)		{		make(Pi,i);		if(anderson && (initflag==2 || initflag==3 || it_cnt>1) && rflag)			Bt=spdmtrace(sigtemp,Pi,qp);/*trace(siginv*S*siginv-siginv)Pi */		else			Bt=spdmtrace(sig1temp,Pi,qp);/*trace(siginv*S*siginv*Pi) */		Bi[i]=Bt;		}	return;	}	/* complex case	Bi is real	Let M' be the complex transpose of M,	if M=M', then M is hermitian, siginv and S and Pi are hermitian,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -