📄 inregion.m
字号:
function [in, on] = inregion(x,y,xv,yv)%INREGION True for points inside or on a polygonal region.% IN = INREGION(X, Y, XV, YV) returns a matrix IN the size of X and Y.% IN(p,q) = 1 if the point (X(p,q), Y(p,q)) is either strictly inside or% on the edge of the polygonal region whose vertices are specified by the% vectors XV and YV; otherwise IN(p,q) = 0.%% [IN ON] = INREGION returns a second matrix, ON, which is the size of X% and Y. ON(p,q) = 1 if the point (X(p,q), Y(p,q)) is on the edge of the% polygonal region; otherwise ON(p,q) = 0.%% INREGION is a modification of INPOLYGON that uses a roundoff error% compensating tolerance in the cross product sign test.%% Example:% xv = [-3 -3 1 1 3 1 -1 -1 -3];% yv = [-3 -1 3 1 1 -1 -1 -3 -3];% [x,y] = meshgrid(-3:1/2:3);% [in,on] = inregion(x,y,xv,yv);% p = find(in-on);% q = find(on);% plot(xv,yv,'-',x(p),y(p),'ko',x(q),y(q),'ro')% axis([-5 5 -4 4])% If (xv,yv) is not closed, close it.xv = xv(:);yv = yv(:);Nv = length(xv);if ((xv(1) ~= xv(Nv)) | (yv(1) ~= yv(Nv))) xv = [xv ; xv(1)]; yv = [yv ; yv(1)]; Nv = Nv + 1;endinputSize = size(x);x = x(:).';y = y(:).';mask = (x >= min(xv)) & (x <= max(xv)) & (y>=min(yv)) & (y<=max(yv));if ~any(mask) in = zeros(inputSize); on = in; returnendinbounds = find(mask);x = x(mask);y = y(mask);% Choose block_length to keep memory usage of vec_inpolygon around% 10 Megabytes.block_length = 1e5;M = prod(size(x));if M*Nv < block_length if nargout > 1 [in on] = vec_inpolygon(Nv,x,y,xv,yv); else in = vec_inpolygon(Nv,x,y,xv,yv); endelse % Process at most N elements at a time N = ceil(block_length/Nv); in = false(1,M); if nargout > 1 on = false(1,M); end n1 = 0; n2 = 0; while n2 < M, n1 = n2+1; n2 = n1+N; if n2 > M, n2 = M; end if nargout > 1 [in(n1:n2) on(n1:n2)] = vec_inpolygon(Nv,x(n1:n2),y(n1:n2),xv,yv); else in(n1:n2) = vec_inpolygon(Nv,x(n1:n2),y(n1:n2),xv,yv); end endendif nargout > 1 onmask = mask; onmask(inbounds(~on)) = 0; on = reshape(onmask, inputSize);endmask(inbounds(~in)) = 0;% Reshape output matrix.in = reshape(mask, inputSize);%----------------------------------------------function [in, on] = vec_inpolygon(Nv,x,y,xv,yv)% vectorize the computation.% Translate the vertices so that the test points are% at the origin.Np = length(x);x = x(ones(Nv,1),:);y = y(ones(Nv,1),:);xv = xv(:,ones(1,Np)) - x;yv = yv(:,ones(1,Np)) - y;% Compute the quadrant number for the vertices relative% to the test points.posX = xv > 0;posY = yv > 0;negX = ~posX;negY = ~posY;quad = (negX & posY) + 2*(negX & negY) + ... 3*(posX & negY);% Compute the sign() of the cross product and dot product% of adjacent vertices.% Modified 09/17/03 to use a tolerance in the cross product sign test.m = 1:Nv-1;mp1 = 2:Nv;crossProduct = xv(m,:) .* yv(mp1,:) - xv(mp1,:) .* yv(m,:);tol = 10*Nv*(max(abs(xv(:)))+max(abs(yv(:))))*eps;crossProduct(abs(crossProduct)<tol) = 0;signCrossProduct = sign(crossProduct);dotProduct = xv(m,:) .* xv(mp1,:) + yv(m,:) .* yv(mp1,:);% Compute the vertex quadrant changes for each test point.diffQuad = diff(quad);% Fix up the quadrant differences. Replace 3 by -1 and -3 by 1.% Any quadrant difference with an absolute value of 2 should have% the same sign as the cross product.idx = (abs(diffQuad) == 3);diffQuad(idx) = -diffQuad(idx)/3;idx = (abs(diffQuad) == 2);diffQuad(idx) = 2*signCrossProduct(idx);% Find the inside points.in = (sum(diffQuad) ~= 0);% Find the points on the polygon. If the cross product is 0 and% the dot product is nonpositive anywhere, then the corresponding% point must be on the contour.on = any((signCrossProduct == 0) & (dotProduct <= 0));in = in | on;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -