📄 integral_op.m
字号:
function Ku = integral_op(u,k_hat)%% Ku = integral_op(u,k_hat)%% Use 2-D FFT's to evaluate discrete approximation to the % 2-D convolution integral%% Ku(x,y) = \int \int k(x-x',y-y') u(x',y') dx' dy'.%% k_hat is the shifted 2-D discrete Fourier transform of the 2_D % kernel evaluated at node points (x_i,y_j), and then extended.% u is also assumed to be evaluated at node points (x_i,y_j).% The size of k_hat is 4 times that of u, due to extension. n = max(size(u)); h = 1 / n; n2 = 2 * n; Ku_ext = real(ifft2( ((fft2(u,n2,n2)) .* k_hat))) ; Ku = Ku_ext(1:n,1:n) * h^2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -