📄 rfm_model.c
字号:
/* tab:4 * * * "Copyright (c) 2001 and The Regents of the University of * California. All rights reserved. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose, without fee, and without written * agreement is hereby granted, provided that the above copyright * notice and the following two paragraphs appear in all copies of * this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS * DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE * PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF * CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, * UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Authors: Philip Levis * */#include "rfm_model.h"#include "tossim.h"#include "external_comm.h"#include "dbg.h"#include <stdio.h>#include <stdlib.h>#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h>/* * The simple RFM model simulates every mote being in a single cell * (they can all hear one another). Bit transmission is * error-free. Simulation is achieved by using a radio_active variable * for each mote, which starts at 0. Every time a mote transmits, it * increments the radio_active value for every other mote. When a mote * listens, it hears a bit if the radio_active value is one or * greater. When a mote finishes transmitting, it decrements the * radio_active value of every other mote. Although very simple, this * simulation mechanism allows for extremeley accurate network timing * simulation. * * The static model is very similar to the simple model except that * the motes form an undirected connectivity graph. This graph is * specified by the file "cells.txt" and its format is documented in * the TOSSIM manual. */// Variables for the simple modelint isTransmitting[TOSNODES];int transmitting[TOSNODES];int radio_active[TOSNODES];void simple_init() { int i; for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i] = 0; }}void simple_transmit(int moteID, char bit) { int i; transmitting[moteID] = bit; writeOutRadioBit(tos_state.tos_time, (short)moteID, bit); for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i] += bit; }}void simple_stops_transmit(int moteID) { int i; if (transmitting[moteID]) { transmitting[moteID] = 0; for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i]--; } }}char simple_hears(int moteID) { // Uncomment these lines to add erroneus 1s. The probability // can be adjusted by changing the constants. //int rand = random(); //if ((rand & (int)0x7f) == 0x1f) { //return 1; //} // else { return (radio_active[moteID] > 0)? 1:0; //}}rfm_model* create_simple_model() { rfm_model* model = (rfm_model*)malloc(sizeof(rfm_model)); model->init = simple_init; model->transmit = simple_transmit; model->stop_transmit = simple_stops_transmit; model->hears = simple_hears; return model;}char connectivity[TOSNODES][TOSNODES]; // Connectivity graphint read_entry(FILE* file, int* mote_one, int* mote_two) { char buf[128]; int index = 0; int ch; // Read in first number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[index] = (char)ch; index++; } else if (ch == ':') { buf[index] = 0; break; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (index > 0) {return 0;} } else { return 0; } } *mote_one = atoi(buf); index = 0; // Read in second number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[index] = (char)ch; index++; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (index == 0) {return 0;} else { buf[index] = 0; break; } } else { return 0; } } *mote_two = atoi(buf); return 1;}void static_one_cell_init() { int i,j; for (i = 0; i < TOSNODES; i++) { for (j = 0; j < TOSNODES; j++) { connectivity[i][j] = 1; } }}void static_init() { int fd = open("cells.txt", O_RDONLY); FILE* file = fdopen(fd, "r"); if (fd < 0) { dbg(DBG_ERROR, ("No cells.txt found for static rfm model. Defaulting to one cell.\n")); static_one_cell_init(); return; } while(1) { int mote_one; int mote_two; if (read_entry(file, &mote_one, &mote_two)) { connectivity[mote_one][mote_two] = 1; connectivity[mote_two][mote_one] = 1; } else { break; } } dbg(DBG_BOOT, ("RFM connectivity graph constructed.\n"));}void static_transmit(int moteID, char bit) { int i; transmitting[moteID] = bit; writeOutRadioBit(tos_state.tos_time, (short)moteID, bit); for (i = 0; i < tos_state.num_nodes; i++) { if (connectivity[moteID][i]) { radio_active[i] += bit; } }}void static_stops_transmit(int moteID) { int i; if (transmitting[moteID]) { transmitting[moteID] = 0; for (i = 0; i < tos_state.num_nodes; i++) { if (connectivity[moteID][i]) { radio_active[i]--; } } }}char static_hears(int moteID) { return (radio_active[moteID] > 0)? 1:0;}rfm_model* create_static_model() { rfm_model* model = (rfm_model*)malloc(sizeof(rfm_model)); model->init = static_init; model->transmit = static_transmit; model->stop_transmit = static_stops_transmit; model->hears = static_hears; return model;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -